| Step | Hyp | Ref
| Expression |
| 1 | | isfi 6820 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 2 | 1 | biimpi 120 |
. 2
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | | nn0suc 4640 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
| 4 | 3 | ad2antrl 490 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
| 5 | | simplrr 536 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ 𝑛) |
| 6 | | simpr 110 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅) |
| 7 | 5, 6 | breqtrd 4059 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅) |
| 8 | | en0 6854 |
. . . . . 6
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| 9 | 7, 8 | sylib 122 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅) |
| 10 | 9 | ex 115 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 = ∅ → 𝐴 = ∅)) |
| 11 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) → 𝐴 ≈ 𝑛) |
| 12 | 11 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ 𝑛) |
| 13 | 12 | ensymd 6842 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛 ≈ 𝐴) |
| 14 | | bren 6806 |
. . . . . . . 8
⊢ (𝑛 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) |
| 15 | 13, 14 | sylib 122 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) |
| 16 | | f1of 5504 |
. . . . . . . . . 10
⊢ (𝑓:𝑛–1-1-onto→𝐴 → 𝑓:𝑛⟶𝐴) |
| 17 | 16 | adantl 277 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑓:𝑛⟶𝐴) |
| 18 | | sucidg 4451 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚) |
| 19 | 18 | ad3antlr 493 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑚 ∈ suc 𝑚) |
| 20 | | simplr 528 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑛 = suc 𝑚) |
| 21 | 19, 20 | eleqtrrd 2276 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑚 ∈ 𝑛) |
| 22 | 17, 21 | ffvelcdmd 5698 |
. . . . . . . 8
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → (𝑓‘𝑚) ∈ 𝐴) |
| 23 | | elex2 2779 |
. . . . . . . 8
⊢ ((𝑓‘𝑚) ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| 24 | 22, 23 | syl 14 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → ∃𝑥 𝑥 ∈ 𝐴) |
| 25 | 15, 24 | exlimddv 1913 |
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑥 𝑥 ∈ 𝐴) |
| 26 | 25 | ex 115 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → ∃𝑥 𝑥 ∈ 𝐴)) |
| 27 | 26 | rexlimdva 2614 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → ∃𝑥 𝑥 ∈ 𝐴)) |
| 28 | 10, 27 | orim12d 787 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ((𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴))) |
| 29 | 4, 28 | mpd 13 |
. 2
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴)) |
| 30 | 2, 29 | rexlimddv 2619 |
1
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴)) |