Step | Hyp | Ref
| Expression |
1 | | isfi 6727 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
2 | 1 | biimpi 119 |
. 2
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | | nn0suc 4581 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
4 | 3 | ad2antrl 482 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
5 | | simplrr 526 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ 𝑛) |
6 | | simpr 109 |
. . . . . . 7
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅) |
7 | 5, 6 | breqtrd 4008 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅) |
8 | | en0 6761 |
. . . . . 6
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
9 | 7, 8 | sylib 121 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅) |
10 | 9 | ex 114 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 = ∅ → 𝐴 = ∅)) |
11 | | simplrr 526 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) → 𝐴 ≈ 𝑛) |
12 | 11 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ 𝑛) |
13 | 12 | ensymd 6749 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛 ≈ 𝐴) |
14 | | bren 6713 |
. . . . . . . 8
⊢ (𝑛 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) |
15 | 13, 14 | sylib 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛–1-1-onto→𝐴) |
16 | | f1of 5432 |
. . . . . . . . . 10
⊢ (𝑓:𝑛–1-1-onto→𝐴 → 𝑓:𝑛⟶𝐴) |
17 | 16 | adantl 275 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑓:𝑛⟶𝐴) |
18 | | sucidg 4394 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚) |
19 | 18 | ad3antlr 485 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑚 ∈ suc 𝑚) |
20 | | simplr 520 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑛 = suc 𝑚) |
21 | 19, 20 | eleqtrrd 2246 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → 𝑚 ∈ 𝑛) |
22 | 17, 21 | ffvelrnd 5621 |
. . . . . . . 8
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → (𝑓‘𝑚) ∈ 𝐴) |
23 | | elex2 2742 |
. . . . . . . 8
⊢ ((𝑓‘𝑚) ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
24 | 22, 23 | syl 14 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ (𝑛 ∈ ω
∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛–1-1-onto→𝐴) → ∃𝑥 𝑥 ∈ 𝐴) |
25 | 15, 24 | exlimddv 1886 |
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑥 𝑥 ∈ 𝐴) |
26 | 25 | ex 114 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → ∃𝑥 𝑥 ∈ 𝐴)) |
27 | 26 | rexlimdva 2583 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → ∃𝑥 𝑥 ∈ 𝐴)) |
28 | 10, 27 | orim12d 776 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ((𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴))) |
29 | 4, 28 | mpd 13 |
. 2
⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴)) |
30 | 2, 29 | rexlimddv 2588 |
1
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴)) |