| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indthincALT | Structured version Visualization version GIF version | ||
| Description: An alternate proof of indthinc 49451 assuming more axioms including ax-pow 5320 and ax-un 7711. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| indthinc.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| indthinc.h | ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) |
| indthinc.o | ⊢ (𝜑 → ∅ = (comp‘𝐶)) |
| indthinc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| indthincALT | ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 2 | indthinc.h | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) | |
| 3 | 1oex 8444 | . . . . . 6 ⊢ 1o ∈ V | |
| 4 | 3 | ovconst2 7569 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
| 5 | domrefg 8958 | . . . . . 6 ⊢ (1o ∈ V → 1o ≼ 1o) | |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ 1o ≼ 1o |
| 7 | 4, 6 | eqbrtrdi 5146 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) |
| 8 | modom2 9192 | . . . 4 ⊢ (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
| 11 | indthinc.o | . 2 ⊢ (𝜑 → ∅ = (comp‘𝐶)) | |
| 12 | indthinc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 13 | biid 261 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) | |
| 14 | id 22 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) | |
| 15 | 14 | ancli 548 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 16 | 3 | ovconst2 7569 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
| 17 | 0lt1o 8468 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 18 | eleq2 2817 | . . . . 5 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o)) | |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 20 | 15, 16, 19 | 3syl 18 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 22 | 17 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ∅ ∈ 1o) |
| 23 | 0ov 7424 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉∅𝑧) = ∅ | |
| 24 | 23 | oveqi 7400 | . . . . . 6 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = (𝑔∅𝑓) |
| 25 | 0ov 7424 | . . . . . 6 ⊢ (𝑔∅𝑓) = ∅ | |
| 26 | 24, 25 | eqtri 2752 | . . . . 5 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅ |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅) |
| 28 | 3 | ovconst2 7569 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
| 29 | 28 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
| 30 | 22, 27, 29 | 3eltr4d 2843 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
| 31 | 30 | ad2antrl 728 | . 2 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
| 32 | 1, 2, 10, 11, 12, 13, 21, 31 | isthincd2 49426 | 1 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 Vcvv 3447 ∅c0 4296 {csn 4589 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ≼ cdom 8916 Basecbs 17179 Hom chom 17231 compcco 17232 Idccid 17626 ThinCatcthinc 49406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-1o 8434 df-en 8919 df-dom 8920 df-sdom 8921 df-cat 17629 df-cid 17630 df-thinc 49407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |