![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indthincALT | Structured version Visualization version GIF version |
Description: An alternate proof for indthinc 48049 assuming more axioms including ax-pow 5360 and ax-un 7735. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
indthinc.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
indthinc.h | ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) |
indthinc.o | ⊢ (𝜑 → ∅ = (comp‘𝐶)) |
indthinc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
indthincALT | ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indthinc.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
2 | indthinc.h | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) | |
3 | 1oex 8491 | . . . . . 6 ⊢ 1o ∈ V | |
4 | 3 | ovconst2 7596 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
5 | domrefg 9002 | . . . . . 6 ⊢ (1o ∈ V → 1o ≼ 1o) | |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ 1o ≼ 1o |
7 | 4, 6 | eqbrtrdi 5182 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) |
8 | modom2 9264 | . . . 4 ⊢ (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
11 | indthinc.o | . 2 ⊢ (𝜑 → ∅ = (comp‘𝐶)) | |
12 | indthinc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
13 | biid 261 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) | |
14 | id 22 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) | |
15 | 14 | ancli 548 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
16 | 3 | ovconst2 7596 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
17 | 0lt1o 8519 | . . . . 5 ⊢ ∅ ∈ 1o | |
18 | eleq2 2818 | . . . . 5 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o)) | |
19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
20 | 15, 16, 19 | 3syl 18 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
22 | 17 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ∅ ∈ 1o) |
23 | 0ov 7452 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉∅𝑧) = ∅ | |
24 | 23 | oveqi 7428 | . . . . . 6 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = (𝑔∅𝑓) |
25 | 0ov 7452 | . . . . . 6 ⊢ (𝑔∅𝑓) = ∅ | |
26 | 24, 25 | eqtri 2756 | . . . . 5 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅ |
27 | 26 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅) |
28 | 3 | ovconst2 7596 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
29 | 28 | 3adant2 1129 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
30 | 22, 27, 29 | 3eltr4d 2844 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
31 | 30 | ad2antrl 727 | . 2 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
32 | 1, 2, 10, 11, 12, 13, 21, 31 | isthincd2 48035 | 1 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃*wmo 2528 Vcvv 3470 ∅c0 4319 {csn 4625 〈cop 4631 class class class wbr 5143 ↦ cmpt 5226 × cxp 5671 ‘cfv 6543 (class class class)co 7415 1oc1o 8474 ≼ cdom 8956 Basecbs 17174 Hom chom 17238 compcco 17239 Idccid 17639 ThinCatcthinc 48016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-1o 8481 df-en 8959 df-dom 8960 df-sdom 8961 df-cat 17642 df-cid 17643 df-thinc 48017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |