| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indthincALT | Structured version Visualization version GIF version | ||
| Description: An alternate proof of indthinc 49502 assuming more axioms including ax-pow 5301 and ax-un 7668. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| indthinc.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| indthinc.h | ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) |
| indthinc.o | ⊢ (𝜑 → ∅ = (comp‘𝐶)) |
| indthinc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| indthincALT | ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 2 | indthinc.h | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) | |
| 3 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 4 | 3 | ovconst2 7526 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
| 5 | domrefg 8909 | . . . . . 6 ⊢ (1o ∈ V → 1o ≼ 1o) | |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ 1o ≼ 1o |
| 7 | 4, 6 | eqbrtrdi 5128 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) |
| 8 | modom2 9136 | . . . 4 ⊢ (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
| 11 | indthinc.o | . 2 ⊢ (𝜑 → ∅ = (comp‘𝐶)) | |
| 12 | indthinc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 13 | biid 261 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) | |
| 14 | id 22 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) | |
| 15 | 14 | ancli 548 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 16 | 3 | ovconst2 7526 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
| 17 | 0lt1o 8419 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 18 | eleq2 2820 | . . . . 5 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o)) | |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 20 | 15, 16, 19 | 3syl 18 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 22 | 17 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ∅ ∈ 1o) |
| 23 | 0ov 7383 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉∅𝑧) = ∅ | |
| 24 | 23 | oveqi 7359 | . . . . . 6 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = (𝑔∅𝑓) |
| 25 | 0ov 7383 | . . . . . 6 ⊢ (𝑔∅𝑓) = ∅ | |
| 26 | 24, 25 | eqtri 2754 | . . . . 5 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅ |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅) |
| 28 | 3 | ovconst2 7526 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
| 29 | 28 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
| 30 | 22, 27, 29 | 3eltr4d 2846 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
| 31 | 30 | ad2antrl 728 | . 2 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
| 32 | 1, 2, 10, 11, 12, 13, 21, 31 | isthincd2 49477 | 1 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 Vcvv 3436 ∅c0 4280 {csn 4573 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ≼ cdom 8867 Basecbs 17120 Hom chom 17172 compcco 17173 Idccid 17571 ThinCatcthinc 49457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-1o 8385 df-en 8870 df-dom 8871 df-sdom 8872 df-cat 17574 df-cid 17575 df-thinc 49458 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |