Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indthincALT Structured version   Visualization version   GIF version

Theorem indthincALT 46222
Description: An alternate proof for indthinc 46221 assuming more axioms including ax-pow 5283 and ax-un 7566. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
indthinc.h (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
indthinc.o (𝜑 → ∅ = (comp‘𝐶))
indthinc.c (𝜑𝐶𝑉)
Assertion
Ref Expression
indthincALT (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem indthincALT
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indthinc.h . 2 (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
3 1oex 8280 . . . . . 6 1o ∈ V
43ovconst2 7430 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o)
5 domrefg 8730 . . . . . 6 (1o ∈ V → 1o ≼ 1o)
63, 5ax-mp 5 . . . . 5 1o ≼ 1o
74, 6eqbrtrdi 5109 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o)
8 modom2 8954 . . . 4 (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o)
97, 8sylibr 233 . . 3 ((𝑥𝐵𝑦𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦))
109adantl 481 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦))
11 indthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
12 indthinc.c . 2 (𝜑𝐶𝑉)
13 biid 260 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))))
14 id 22 . . . . 5 (𝑦𝐵𝑦𝐵)
1514ancli 548 . . . 4 (𝑦𝐵 → (𝑦𝐵𝑦𝐵))
163ovconst2 7430 . . . 4 ((𝑦𝐵𝑦𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o)
17 0lt1o 8296 . . . . 5 ∅ ∈ 1o
18 eleq2 2827 . . . . 5 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o))
1917, 18mpbiri 257 . . . 4 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2015, 16, 193syl 18 . . 3 (𝑦𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2120adantl 481 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2217a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ∅ ∈ 1o)
23 0ov 7292 . . . . . . 7 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
2423oveqi 7268 . . . . . 6 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
25 0ov 7292 . . . . . 6 (𝑔𝑓) = ∅
2624, 25eqtri 2766 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
2726a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅)
283ovconst2 7430 . . . . 5 ((𝑥𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
29283adant2 1129 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
3022, 27, 293eltr4d 2854 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
3130ad2antrl 724 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
321, 2, 10, 11, 12, 13, 21, 31isthincd2 46207 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ∃*wmo 2538  Vcvv 3422  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  1oc1o 8260  cdom 8689  Basecbs 16840  Hom chom 16899  compcco 16900  Idccid 17291  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-cat 17294  df-cid 17295  df-thinc 46189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator