Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indthincALT Structured version   Visualization version   GIF version

Theorem indthincALT 49503
Description: An alternate proof of indthinc 49502 assuming more axioms including ax-pow 5301 and ax-un 7668. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
indthinc.h (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
indthinc.o (𝜑 → ∅ = (comp‘𝐶))
indthinc.c (𝜑𝐶𝑉)
Assertion
Ref Expression
indthincALT (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem indthincALT
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indthinc.h . 2 (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
3 1oex 8395 . . . . . 6 1o ∈ V
43ovconst2 7526 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o)
5 domrefg 8909 . . . . . 6 (1o ∈ V → 1o ≼ 1o)
63, 5ax-mp 5 . . . . 5 1o ≼ 1o
74, 6eqbrtrdi 5128 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o)
8 modom2 9136 . . . 4 (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o)
97, 8sylibr 234 . . 3 ((𝑥𝐵𝑦𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦))
109adantl 481 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦))
11 indthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
12 indthinc.c . 2 (𝜑𝐶𝑉)
13 biid 261 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))))
14 id 22 . . . . 5 (𝑦𝐵𝑦𝐵)
1514ancli 548 . . . 4 (𝑦𝐵 → (𝑦𝐵𝑦𝐵))
163ovconst2 7526 . . . 4 ((𝑦𝐵𝑦𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o)
17 0lt1o 8419 . . . . 5 ∅ ∈ 1o
18 eleq2 2820 . . . . 5 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o))
1917, 18mpbiri 258 . . . 4 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2015, 16, 193syl 18 . . 3 (𝑦𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2120adantl 481 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2217a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ∅ ∈ 1o)
23 0ov 7383 . . . . . . 7 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
2423oveqi 7359 . . . . . 6 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
25 0ov 7383 . . . . . 6 (𝑔𝑓) = ∅
2624, 25eqtri 2754 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
2726a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅)
283ovconst2 7526 . . . . 5 ((𝑥𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
29283adant2 1131 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
3022, 27, 293eltr4d 2846 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
3130ad2antrl 728 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
321, 2, 10, 11, 12, 13, 21, 31isthincd2 49477 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ∃*wmo 2533  Vcvv 3436  c0 4280  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  1oc1o 8378  cdom 8867  Basecbs 17120  Hom chom 17172  compcco 17173  Idccid 17571  ThinCatcthinc 49457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872  df-cat 17574  df-cid 17575  df-thinc 49458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator