![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indthincALT | Structured version Visualization version GIF version |
Description: An alternate proof for indthinc 47860 assuming more axioms including ax-pow 5353 and ax-un 7718. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
indthinc.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
indthinc.h | ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) |
indthinc.o | ⊢ (𝜑 → ∅ = (comp‘𝐶)) |
indthinc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
indthincALT | ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indthinc.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
2 | indthinc.h | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) | |
3 | 1oex 8471 | . . . . . 6 ⊢ 1o ∈ V | |
4 | 3 | ovconst2 7580 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
5 | domrefg 8979 | . . . . . 6 ⊢ (1o ∈ V → 1o ≼ 1o) | |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ 1o ≼ 1o |
7 | 4, 6 | eqbrtrdi 5177 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) |
8 | modom2 9241 | . . . 4 ⊢ (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
11 | indthinc.o | . 2 ⊢ (𝜑 → ∅ = (comp‘𝐶)) | |
12 | indthinc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
13 | biid 261 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) | |
14 | id 22 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) | |
15 | 14 | ancli 548 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
16 | 3 | ovconst2 7580 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
17 | 0lt1o 8499 | . . . . 5 ⊢ ∅ ∈ 1o | |
18 | eleq2 2814 | . . . . 5 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o)) | |
19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
20 | 15, 16, 19 | 3syl 18 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
22 | 17 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ∅ ∈ 1o) |
23 | 0ov 7438 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩∅𝑧) = ∅ | |
24 | 23 | oveqi 7414 | . . . . . 6 ⊢ (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔∅𝑓) |
25 | 0ov 7438 | . . . . . 6 ⊢ (𝑔∅𝑓) = ∅ | |
26 | 24, 25 | eqtri 2752 | . . . . 5 ⊢ (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅ |
27 | 26 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅) |
28 | 3 | ovconst2 7580 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
29 | 28 | 3adant2 1128 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
30 | 22, 27, 29 | 3eltr4d 2840 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
31 | 30 | ad2antrl 725 | . 2 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
32 | 1, 2, 10, 11, 12, 13, 21, 31 | isthincd2 47846 | 1 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃*wmo 2524 Vcvv 3466 ∅c0 4314 {csn 4620 ⟨cop 4626 class class class wbr 5138 ↦ cmpt 5221 × cxp 5664 ‘cfv 6533 (class class class)co 7401 1oc1o 8454 ≼ cdom 8933 Basecbs 17143 Hom chom 17207 compcco 17208 Idccid 17608 ThinCatcthinc 47827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-1o 8461 df-en 8936 df-dom 8937 df-sdom 8938 df-cat 17611 df-cid 17612 df-thinc 47828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |