| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indthincALT | Structured version Visualization version GIF version | ||
| Description: An alternate proof of indthinc 49315 assuming more axioms including ax-pow 5340 and ax-un 7734. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| indthinc.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| indthinc.h | ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) |
| indthinc.o | ⊢ (𝜑 → ∅ = (comp‘𝐶)) |
| indthinc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| indthincALT | ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 2 | indthinc.h | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) | |
| 3 | 1oex 8495 | . . . . . 6 ⊢ 1o ∈ V | |
| 4 | 3 | ovconst2 7592 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
| 5 | domrefg 9006 | . . . . . 6 ⊢ (1o ∈ V → 1o ≼ 1o) | |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ 1o ≼ 1o |
| 7 | 4, 6 | eqbrtrdi 5163 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) |
| 8 | modom2 9258 | . . . 4 ⊢ (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ≼ 1o) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦)) |
| 11 | indthinc.o | . 2 ⊢ (𝜑 → ∅ = (comp‘𝐶)) | |
| 12 | indthinc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 13 | biid 261 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) | |
| 14 | id 22 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) | |
| 15 | 14 | ancli 548 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 16 | 3 | ovconst2 7592 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o) |
| 17 | 0lt1o 8521 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 18 | eleq2 2824 | . . . . 5 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o)) | |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 20 | 15, 16, 19 | 3syl 18 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦)) |
| 22 | 17 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ∅ ∈ 1o) |
| 23 | 0ov 7447 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉∅𝑧) = ∅ | |
| 24 | 23 | oveqi 7423 | . . . . . 6 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = (𝑔∅𝑓) |
| 25 | 0ov 7447 | . . . . . 6 ⊢ (𝑔∅𝑓) = ∅ | |
| 26 | 24, 25 | eqtri 2759 | . . . . 5 ⊢ (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅ |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) = ∅) |
| 28 | 3 | ovconst2 7592 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
| 29 | 28 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o) |
| 30 | 22, 27, 29 | 3eltr4d 2850 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
| 31 | 30 | ad2antrl 728 | . 2 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(〈𝑥, 𝑦〉∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧)) |
| 32 | 1, 2, 10, 11, 12, 13, 21, 31 | isthincd2 49290 | 1 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃*wmo 2538 Vcvv 3464 ∅c0 4313 {csn 4606 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 × cxp 5657 ‘cfv 6536 (class class class)co 7410 1oc1o 8478 ≼ cdom 8962 Basecbs 17233 Hom chom 17287 compcco 17288 Idccid 17682 ThinCatcthinc 49270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-1o 8485 df-en 8965 df-dom 8966 df-sdom 8967 df-cat 17685 df-cid 17686 df-thinc 49271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |