MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2on0 Structured version   Visualization version   GIF version

Theorem 2on0 8399
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0 2o ≠ ∅

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 8386 . 2 2o = suc 1o
2 nsuceq0 6391 . 2 suc 1o ≠ ∅
31, 2eqnetri 2998 1 2o ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2928  c0 4283  suc csuc 6308  1oc1o 8378  2oc2o 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-un 3907  df-nul 4284  df-sn 4577  df-suc 6312  df-2o 8386
This theorem is referenced by:  ord2eln012  8412  snnen2o  9129  1sdom2  9132  1sdom2dom  9138  pmtrfmvdn0  19375  pmtrsn  19432  efgrcl  19628  sltval2  27596  sltintdifex  27601  nogt01o  27636  noinfbnd1lem5  27667  noinfbnd2lem1  27670  goaln0  35435  goalr  35439  fmla0disjsuc  35440  onint1  36489  1oequni2o  37408  finxpreclem4  37434  finxp3o  37440  frlmpwfi  43137  clsk1indlem1  44084  nelsubc3  49109
  Copyright terms: Public domain W3C validator