| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version | ||
| Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2on0 | ⊢ 2o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8392 | . 2 ⊢ 2o = suc 1o | |
| 2 | nsuceq0 6396 | . 2 ⊢ suc 1o ≠ ∅ | |
| 3 | 1, 2 | eqnetri 2999 | 1 ⊢ 2o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2929 ∅c0 4282 suc csuc 6313 1oc1o 8384 2oc2o 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 df-sn 4576 df-suc 6317 df-2o 8392 |
| This theorem is referenced by: ord2eln012 8418 snnen2o 9136 1sdom2 9139 1sdom2dom 9145 pmtrfmvdn0 19376 pmtrsn 19433 efgrcl 19629 sltval2 27596 sltintdifex 27601 nogt01o 27636 noinfbnd1lem5 27667 noinfbnd2lem1 27670 goaln0 35458 goalr 35462 fmla0disjsuc 35463 onint1 36514 1oequni2o 37433 finxpreclem4 37459 finxp3o 37465 frlmpwfi 43216 clsk1indlem1 44163 nelsubc3 49197 |
| Copyright terms: Public domain | W3C validator |