| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version | ||
| Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2on0 | ⊢ 2o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8386 | . 2 ⊢ 2o = suc 1o | |
| 2 | nsuceq0 6391 | . 2 ⊢ suc 1o ≠ ∅ | |
| 3 | 1, 2 | eqnetri 2998 | 1 ⊢ 2o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4283 suc csuc 6308 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 df-sn 4577 df-suc 6312 df-2o 8386 |
| This theorem is referenced by: ord2eln012 8412 snnen2o 9129 1sdom2 9132 1sdom2dom 9138 pmtrfmvdn0 19375 pmtrsn 19432 efgrcl 19628 sltval2 27596 sltintdifex 27601 nogt01o 27636 noinfbnd1lem5 27667 noinfbnd2lem1 27670 goaln0 35435 goalr 35439 fmla0disjsuc 35440 onint1 36489 1oequni2o 37408 finxpreclem4 37434 finxp3o 37440 frlmpwfi 43137 clsk1indlem1 44084 nelsubc3 49109 |
| Copyright terms: Public domain | W3C validator |