MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2on0 Structured version   Visualization version   GIF version

Theorem 2on0 8313
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0 2o ≠ ∅

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 8298 . 2 2o = suc 1o
2 nsuceq0 6346 . 2 suc 1o ≠ ∅
31, 2eqnetri 3014 1 2o ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2943  c0 4256  suc csuc 6268  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-suc 6272  df-2o 8298
This theorem is referenced by:  ord2eln012  8327  snnen2oOLD  9010  snnen2o  9026  pmtrfmvdn0  19070  pmtrsn  19127  efgrcl  19321  goaln0  33355  goalr  33359  fmla0disjsuc  33360  sltval2  33859  sltintdifex  33864  nogt01o  33899  noinfbnd1lem5  33930  noinfbnd2lem1  33933  onint1  34638  1oequni2o  35539  finxpreclem4  35565  finxp3o  35571  frlmpwfi  40923  clsk1indlem1  41655
  Copyright terms: Public domain W3C validator