Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 | ⊢ 2o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8268 | . 2 ⊢ 2o = suc 1o | |
2 | nsuceq0 6331 | . 2 ⊢ suc 1o ≠ ∅ | |
3 | 1, 2 | eqnetri 3013 | 1 ⊢ 2o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2942 ∅c0 4253 suc csuc 6253 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-suc 6257 df-2o 8268 |
This theorem is referenced by: snnen2o 8903 pmtrfmvdn0 18985 pmtrsn 19042 efgrcl 19236 goaln0 33255 goalr 33259 fmla0disjsuc 33260 sltval2 33786 sltintdifex 33791 nogt01o 33826 noinfbnd1lem5 33857 noinfbnd2lem1 33860 onint1 34565 1oequni2o 35466 finxpreclem4 35492 finxp3o 35498 frlmpwfi 40839 clsk1indlem1 41544 |
Copyright terms: Public domain | W3C validator |