Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 | ⊢ 2o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8282 | . 2 ⊢ 2o = suc 1o | |
2 | nsuceq0 6343 | . 2 ⊢ suc 1o ≠ ∅ | |
3 | 1, 2 | eqnetri 3015 | 1 ⊢ 2o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 ∅c0 4261 suc csuc 6265 1oc1o 8274 2oc2o 8275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-suc 6269 df-2o 8282 |
This theorem is referenced by: snnen2o 8963 pmtrfmvdn0 19051 pmtrsn 19108 efgrcl 19302 goaln0 33334 goalr 33338 fmla0disjsuc 33339 sltval2 33838 sltintdifex 33843 nogt01o 33878 noinfbnd1lem5 33909 noinfbnd2lem1 33912 onint1 34617 1oequni2o 35518 finxpreclem4 35544 finxp3o 35550 frlmpwfi 40903 clsk1indlem1 41608 |
Copyright terms: Public domain | W3C validator |