| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version | ||
| Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2on0 | ⊢ 2o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8438 | . 2 ⊢ 2o = suc 1o | |
| 2 | nsuceq0 6420 | . 2 ⊢ suc 1o ≠ ∅ | |
| 3 | 1, 2 | eqnetri 2996 | 1 ⊢ 2o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 ∅c0 4299 suc csuc 6337 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-suc 6341 df-2o 8438 |
| This theorem is referenced by: ord2eln012 8464 snnen2o 9191 1sdom2 9194 1sdom2dom 9201 pmtrfmvdn0 19399 pmtrsn 19456 efgrcl 19652 sltval2 27575 sltintdifex 27580 nogt01o 27615 noinfbnd1lem5 27646 noinfbnd2lem1 27649 goaln0 35387 goalr 35391 fmla0disjsuc 35392 onint1 36444 1oequni2o 37363 finxpreclem4 37389 finxp3o 37395 frlmpwfi 43094 clsk1indlem1 44041 nelsubc3 49064 |
| Copyright terms: Public domain | W3C validator |