| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version | ||
| Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2on0 | ⊢ 2o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8481 | . 2 ⊢ 2o = suc 1o | |
| 2 | nsuceq0 6437 | . 2 ⊢ suc 1o ≠ ∅ | |
| 3 | 1, 2 | eqnetri 3002 | 1 ⊢ 2o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2932 ∅c0 4308 suc csuc 6354 1oc1o 8473 2oc2o 8474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-suc 6358 df-2o 8481 |
| This theorem is referenced by: ord2eln012 8509 snnen2oOLD 9236 snnen2o 9245 1sdom2 9248 1sdom2dom 9255 pmtrfmvdn0 19443 pmtrsn 19500 efgrcl 19696 sltval2 27620 sltintdifex 27625 nogt01o 27660 noinfbnd1lem5 27691 noinfbnd2lem1 27694 goaln0 35415 goalr 35419 fmla0disjsuc 35420 onint1 36467 1oequni2o 37386 finxpreclem4 37412 finxp3o 37418 frlmpwfi 43122 clsk1indlem1 44069 nelsubc3 49038 |
| Copyright terms: Public domain | W3C validator |