| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version | ||
| Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2on0 | ⊢ 2o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8435 | . 2 ⊢ 2o = suc 1o | |
| 2 | nsuceq0 6417 | . 2 ⊢ suc 1o ≠ ∅ | |
| 3 | 1, 2 | eqnetri 2995 | 1 ⊢ 2o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 ∅c0 4296 suc csuc 6334 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-suc 6338 df-2o 8435 |
| This theorem is referenced by: ord2eln012 8461 snnen2o 9184 1sdom2 9187 1sdom2dom 9194 pmtrfmvdn0 19392 pmtrsn 19449 efgrcl 19645 sltval2 27568 sltintdifex 27573 nogt01o 27608 noinfbnd1lem5 27639 noinfbnd2lem1 27642 goaln0 35380 goalr 35384 fmla0disjsuc 35385 onint1 36437 1oequni2o 37356 finxpreclem4 37382 finxp3o 37388 frlmpwfi 43087 clsk1indlem1 44034 nelsubc3 49060 |
| Copyright terms: Public domain | W3C validator |