![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 | ⊢ 2o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8523 | . 2 ⊢ 2o = suc 1o | |
2 | nsuceq0 6478 | . 2 ⊢ suc 1o ≠ ∅ | |
3 | 1, 2 | eqnetri 3017 | 1 ⊢ 2o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∅c0 4352 suc csuc 6397 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 df-2o 8523 |
This theorem is referenced by: ord2eln012 8553 snnen2oOLD 9290 snnen2o 9300 1sdom2 9303 1sdom2dom 9310 pmtrfmvdn0 19504 pmtrsn 19561 efgrcl 19757 sltval2 27719 sltintdifex 27724 nogt01o 27759 noinfbnd1lem5 27790 noinfbnd2lem1 27793 goaln0 35361 goalr 35365 fmla0disjsuc 35366 onint1 36415 1oequni2o 37334 finxpreclem4 37360 finxp3o 37366 frlmpwfi 43055 clsk1indlem1 44007 |
Copyright terms: Public domain | W3C validator |