| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version | ||
| Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2on0 | ⊢ 2o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8396 | . 2 ⊢ 2o = suc 1o | |
| 2 | nsuceq0 6396 | . 2 ⊢ suc 1o ≠ ∅ | |
| 3 | 1, 2 | eqnetri 2995 | 1 ⊢ 2o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 ∅c0 4286 suc csuc 6313 1oc1o 8388 2oc2o 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-nul 4287 df-sn 4580 df-suc 6317 df-2o 8396 |
| This theorem is referenced by: ord2eln012 8422 snnen2o 9144 1sdom2 9147 1sdom2dom 9153 pmtrfmvdn0 19359 pmtrsn 19416 efgrcl 19612 sltval2 27584 sltintdifex 27589 nogt01o 27624 noinfbnd1lem5 27655 noinfbnd2lem1 27658 goaln0 35368 goalr 35372 fmla0disjsuc 35373 onint1 36425 1oequni2o 37344 finxpreclem4 37370 finxp3o 37376 frlmpwfi 43074 clsk1indlem1 44021 nelsubc3 49060 |
| Copyright terms: Public domain | W3C validator |