MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2on0 Structured version   Visualization version   GIF version

Theorem 2on0 8405
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0 2o ≠ ∅

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 8392 . 2 2o = suc 1o
2 nsuceq0 6396 . 2 suc 1o ≠ ∅
31, 2eqnetri 2999 1 2o ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2929  c0 4282  suc csuc 6313  1oc1o 8384  2oc2o 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-sn 4576  df-suc 6317  df-2o 8392
This theorem is referenced by:  ord2eln012  8418  snnen2o  9136  1sdom2  9139  1sdom2dom  9145  pmtrfmvdn0  19376  pmtrsn  19433  efgrcl  19629  sltval2  27596  sltintdifex  27601  nogt01o  27636  noinfbnd1lem5  27667  noinfbnd2lem1  27670  goaln0  35458  goalr  35462  fmla0disjsuc  35463  onint1  36514  1oequni2o  37433  finxpreclem4  37459  finxp3o  37465  frlmpwfi  43216  clsk1indlem1  44163  nelsubc3  49197
  Copyright terms: Public domain W3C validator