Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version GIF version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 | ⊢ 2o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8298 | . 2 ⊢ 2o = suc 1o | |
2 | nsuceq0 6346 | . 2 ⊢ suc 1o ≠ ∅ | |
3 | 1, 2 | eqnetri 3014 | 1 ⊢ 2o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∅c0 4256 suc csuc 6268 1oc1o 8290 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-suc 6272 df-2o 8298 |
This theorem is referenced by: ord2eln012 8327 snnen2oOLD 9010 snnen2o 9026 pmtrfmvdn0 19070 pmtrsn 19127 efgrcl 19321 goaln0 33355 goalr 33359 fmla0disjsuc 33360 sltval2 33859 sltintdifex 33864 nogt01o 33899 noinfbnd1lem5 33930 noinfbnd2lem1 33933 onint1 34638 1oequni2o 35539 finxpreclem4 35565 finxp3o 35571 frlmpwfi 40923 clsk1indlem1 41655 |
Copyright terms: Public domain | W3C validator |