| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 2on 8488 as of 30-Nov-2024. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2onOLD | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8475 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8486 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2 | onsuci 7827 | . 2 ⊢ suc 1o ∈ On |
| 4 | 1, 3 | eqeltri 2829 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Oncon0 6349 suc csuc 6351 1oc1o 8467 2oc2o 8468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-tr 5227 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-ord 6352 df-on 6353 df-suc 6355 df-1o 8474 df-2o 8475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |