![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2onOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 2on 8476 as of 30-Nov-2024. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2onOLD | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8463 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 8474 | . . 3 ⊢ 1o ∈ On | |
3 | 2 | onsuci 7821 | . 2 ⊢ suc 1o ∈ On |
4 | 1, 3 | eqeltri 2821 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Oncon0 6355 suc csuc 6357 1oc1o 8455 2oc2o 8456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-ord 6358 df-on 6359 df-suc 6361 df-1o 8462 df-2o 8463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |