MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2onOLD Structured version   Visualization version   GIF version

Theorem 2onOLD 8495
Description: Obsolete version of 2on 8494 as of 30-Nov-2024. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2onOLD 2o ∈ On

Proof of Theorem 2onOLD
StepHypRef Expression
1 df-2o 8481 . 2 2o = suc 1o
2 1on 8492 . . 3 1o ∈ On
32onsuci 7833 . 2 suc 1o ∈ On
41, 3eqeltri 2830 1 2o ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Oncon0 6352  suc csuc 6354  1oc1o 8473  2oc2o 8474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358  df-1o 8480  df-2o 8481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator