| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmpwfi | Structured version Visualization version GIF version | ||
| Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| frlmpwfi.r | ⊢ 𝑅 = (ℤ/nℤ‘2) |
| frlmpwfi.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmpwfi.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| frlmpwfi | ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmpwfi.r | . . . . . 6 ⊢ 𝑅 = (ℤ/nℤ‘2) | |
| 2 | 1 | fvexi 6895 | . . . . 5 ⊢ 𝑅 ∈ V |
| 3 | frlmpwfi.y | . . . . . 6 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2736 | . . . . . 6 ⊢ {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} | |
| 7 | 3, 4, 5, 6 | frlmbas 21720 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
| 8 | 2, 7 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
| 9 | frlmpwfi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 10 | 8, 9 | eqtr4di 2789 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = 𝐵) |
| 11 | eqid 2736 | . . . 4 ⊢ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} | |
| 12 | enrefg 9003 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼) | |
| 13 | 2nn 12318 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 14 | 1, 4 | znhash 21524 | . . . . . . . 8 ⊢ (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2) |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘(Base‘𝑅)) = 2 |
| 16 | hash2 14428 | . . . . . . 7 ⊢ (♯‘2o) = 2 | |
| 17 | 15, 16 | eqtr4i 2762 | . . . . . 6 ⊢ (♯‘(Base‘𝑅)) = (♯‘2o) |
| 18 | 2nn0 12523 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 19 | 15, 18 | eqeltri 2831 | . . . . . . . 8 ⊢ (♯‘(Base‘𝑅)) ∈ ℕ0 |
| 20 | fvex 6894 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
| 21 | hashclb 14381 | . . . . . . . . 9 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0) |
| 23 | 19, 22 | mpbir 231 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ Fin |
| 24 | 2onn 8659 | . . . . . . . 8 ⊢ 2o ∈ ω | |
| 25 | nnfi 9186 | . . . . . . . 8 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . . 7 ⊢ 2o ∈ Fin |
| 27 | hashen 14370 | . . . . . . 7 ⊢ (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)) | |
| 28 | 23, 26, 27 | mp2an 692 | . . . . . 6 ⊢ ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o) |
| 29 | 17, 28 | mpbi 230 | . . . . 5 ⊢ (Base‘𝑅) ≈ 2o |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑅) ≈ 2o) |
| 31 | 1 | zncrng 21510 | . . . . . 6 ⊢ (2 ∈ ℕ0 → 𝑅 ∈ CRing) |
| 32 | crngring 20210 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 33 | 18, 31, 32 | mp2b 10 | . . . . 5 ⊢ 𝑅 ∈ Ring |
| 34 | 4, 5 | ring0cl 20232 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 35 | 33, 34 | mp1i 13 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 36 | 2on0 8501 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 37 | 2on 8499 | . . . . . . 7 ⊢ 2o ∈ On | |
| 38 | on0eln0 6414 | . . . . . . 7 ⊢ (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅)) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . 6 ⊢ (∅ ∈ 2o ↔ 2o ≠ ∅) |
| 40 | 36, 39 | mpbir 231 | . . . . 5 ⊢ ∅ ∈ 2o |
| 41 | 40 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ∅ ∈ 2o) |
| 42 | 6, 11, 12, 30, 35, 41 | mapfien2 9426 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
| 43 | 10, 42 | eqbrtrrd 5148 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
| 44 | 11 | pwfi2en 43088 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) |
| 45 | entr 9025 | . 2 ⊢ ((𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | |
| 46 | 43, 44, 45 | syl2anc 584 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 Vcvv 3464 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 class class class wbr 5124 Oncon0 6357 ‘cfv 6536 (class class class)co 7410 ωcom 7866 2oc2o 8479 ↑m cmap 8845 ≈ cen 8961 Fincfn 8964 finSupp cfsupp 9378 ℕcn 12245 2c2 12300 ℕ0cn0 12506 ♯chash 14353 Basecbs 17233 0gc0g 17458 Ringcrg 20198 CRingccrg 20199 ℤ/nℤczn 21468 freeLMod cfrlm 21711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-inf 9460 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-hash 14354 df-dvds 16278 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-prds 17466 df-pws 17468 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-2idl 21216 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-zn 21472 df-dsmm 21697 df-frlm 21712 |
| This theorem is referenced by: isnumbasgrplem3 43096 |
| Copyright terms: Public domain | W3C validator |