![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmpwfi | Structured version Visualization version GIF version |
Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
frlmpwfi.r | ⊢ 𝑅 = (ℤ/nℤ‘2) |
frlmpwfi.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmpwfi.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
frlmpwfi | ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmpwfi.r | . . . . . 6 ⊢ 𝑅 = (ℤ/nℤ‘2) | |
2 | 1 | fvexi 6917 | . . . . 5 ⊢ 𝑅 ∈ V |
3 | frlmpwfi.y | . . . . . 6 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
4 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2726 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2726 | . . . . . 6 ⊢ {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} | |
7 | 3, 4, 5, 6 | frlmbas 21755 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
8 | 2, 7 | mpan 688 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
9 | frlmpwfi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
10 | 8, 9 | eqtr4di 2784 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = 𝐵) |
11 | eqid 2726 | . . . 4 ⊢ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} | |
12 | enrefg 9017 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼) | |
13 | 2nn 12339 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
14 | 1, 4 | znhash 21558 | . . . . . . . 8 ⊢ (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2) |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘(Base‘𝑅)) = 2 |
16 | hash2 14424 | . . . . . . 7 ⊢ (♯‘2o) = 2 | |
17 | 15, 16 | eqtr4i 2757 | . . . . . 6 ⊢ (♯‘(Base‘𝑅)) = (♯‘2o) |
18 | 2nn0 12543 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
19 | 15, 18 | eqeltri 2822 | . . . . . . . 8 ⊢ (♯‘(Base‘𝑅)) ∈ ℕ0 |
20 | fvex 6916 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
21 | hashclb 14377 | . . . . . . . . 9 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0) |
23 | 19, 22 | mpbir 230 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ Fin |
24 | 2onn 8674 | . . . . . . . 8 ⊢ 2o ∈ ω | |
25 | nnfi 9207 | . . . . . . . 8 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
26 | 24, 25 | ax-mp 5 | . . . . . . 7 ⊢ 2o ∈ Fin |
27 | hashen 14366 | . . . . . . 7 ⊢ (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)) | |
28 | 23, 26, 27 | mp2an 690 | . . . . . 6 ⊢ ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o) |
29 | 17, 28 | mpbi 229 | . . . . 5 ⊢ (Base‘𝑅) ≈ 2o |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑅) ≈ 2o) |
31 | 1 | zncrng 21544 | . . . . . 6 ⊢ (2 ∈ ℕ0 → 𝑅 ∈ CRing) |
32 | crngring 20230 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
33 | 18, 31, 32 | mp2b 10 | . . . . 5 ⊢ 𝑅 ∈ Ring |
34 | 4, 5 | ring0cl 20248 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
35 | 33, 34 | mp1i 13 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑅) ∈ (Base‘𝑅)) |
36 | 2on0 8514 | . . . . . 6 ⊢ 2o ≠ ∅ | |
37 | 2on 8512 | . . . . . . 7 ⊢ 2o ∈ On | |
38 | on0eln0 6434 | . . . . . . 7 ⊢ (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅)) | |
39 | 37, 38 | ax-mp 5 | . . . . . 6 ⊢ (∅ ∈ 2o ↔ 2o ≠ ∅) |
40 | 36, 39 | mpbir 230 | . . . . 5 ⊢ ∅ ∈ 2o |
41 | 40 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ∅ ∈ 2o) |
42 | 6, 11, 12, 30, 35, 41 | mapfien2 9454 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
43 | 10, 42 | eqbrtrrd 5179 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
44 | 11 | pwfi2en 42776 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) |
45 | entr 9039 | . 2 ⊢ ((𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | |
46 | 43, 44, 45 | syl2anc 582 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {crab 3419 Vcvv 3462 ∩ cin 3946 ∅c0 4325 𝒫 cpw 4607 class class class wbr 5155 Oncon0 6378 ‘cfv 6556 (class class class)co 7426 ωcom 7878 2oc2o 8492 ↑m cmap 8857 ≈ cen 8973 Fincfn 8976 finSupp cfsupp 9407 ℕcn 12266 2c2 12321 ℕ0cn0 12526 ♯chash 14349 Basecbs 17215 0gc0g 17456 Ringcrg 20218 CRingccrg 20219 ℤ/nℤczn 21494 freeLMod cfrlm 21746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 ax-addf 11239 ax-mulf 11240 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-supp 8177 df-tpos 8243 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-2o 8499 df-oadd 8502 df-er 8736 df-ec 8738 df-qs 8742 df-map 8859 df-ixp 8929 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-fsupp 9408 df-sup 9487 df-inf 9488 df-dju 9946 df-card 9984 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12613 df-dec 12732 df-uz 12877 df-rp 13031 df-fz 13541 df-fzo 13684 df-fl 13814 df-mod 13892 df-seq 14024 df-hash 14350 df-dvds 16259 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-ress 17245 df-plusg 17281 df-mulr 17282 df-starv 17283 df-sca 17284 df-vsca 17285 df-ip 17286 df-tset 17287 df-ple 17288 df-ds 17290 df-unif 17291 df-hom 17292 df-cco 17293 df-0g 17458 df-prds 17464 df-pws 17466 df-imas 17525 df-qus 17526 df-mgm 18635 df-sgrp 18714 df-mnd 18730 df-mhm 18775 df-grp 18933 df-minusg 18934 df-sbg 18935 df-mulg 19064 df-subg 19119 df-nsg 19120 df-eqg 19121 df-ghm 19209 df-cmn 19782 df-abl 19783 df-mgp 20120 df-rng 20138 df-ur 20167 df-ring 20220 df-cring 20221 df-oppr 20318 df-dvdsr 20341 df-rhm 20456 df-subrng 20530 df-subrg 20555 df-lmod 20840 df-lss 20911 df-lsp 20951 df-sra 21153 df-rgmod 21154 df-lidl 21199 df-rsp 21200 df-2idl 21241 df-cnfld 21346 df-zring 21439 df-zrh 21495 df-zn 21498 df-dsmm 21732 df-frlm 21747 |
This theorem is referenced by: isnumbasgrplem3 42784 |
Copyright terms: Public domain | W3C validator |