![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmpwfi | Structured version Visualization version GIF version |
Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
frlmpwfi.r | ⊢ 𝑅 = (ℤ/nℤ‘2) |
frlmpwfi.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmpwfi.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
frlmpwfi | ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmpwfi.r | . . . . . 6 ⊢ 𝑅 = (ℤ/nℤ‘2) | |
2 | 1 | fvexi 6856 | . . . . 5 ⊢ 𝑅 ∈ V |
3 | frlmpwfi.y | . . . . . 6 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
4 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2736 | . . . . . 6 ⊢ {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} | |
7 | 3, 4, 5, 6 | frlmbas 21161 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
8 | 2, 7 | mpan 688 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
9 | frlmpwfi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
10 | 8, 9 | eqtr4di 2794 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = 𝐵) |
11 | eqid 2736 | . . . 4 ⊢ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} | |
12 | enrefg 8924 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼) | |
13 | 2nn 12226 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
14 | 1, 4 | znhash 20965 | . . . . . . . 8 ⊢ (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2) |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘(Base‘𝑅)) = 2 |
16 | hash2 14305 | . . . . . . 7 ⊢ (♯‘2o) = 2 | |
17 | 15, 16 | eqtr4i 2767 | . . . . . 6 ⊢ (♯‘(Base‘𝑅)) = (♯‘2o) |
18 | 2nn0 12430 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
19 | 15, 18 | eqeltri 2834 | . . . . . . . 8 ⊢ (♯‘(Base‘𝑅)) ∈ ℕ0 |
20 | fvex 6855 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
21 | hashclb 14258 | . . . . . . . . 9 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0) |
23 | 19, 22 | mpbir 230 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ Fin |
24 | 2onn 8588 | . . . . . . . 8 ⊢ 2o ∈ ω | |
25 | nnfi 9111 | . . . . . . . 8 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
26 | 24, 25 | ax-mp 5 | . . . . . . 7 ⊢ 2o ∈ Fin |
27 | hashen 14247 | . . . . . . 7 ⊢ (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)) | |
28 | 23, 26, 27 | mp2an 690 | . . . . . 6 ⊢ ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o) |
29 | 17, 28 | mpbi 229 | . . . . 5 ⊢ (Base‘𝑅) ≈ 2o |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑅) ≈ 2o) |
31 | 1 | zncrng 20951 | . . . . . 6 ⊢ (2 ∈ ℕ0 → 𝑅 ∈ CRing) |
32 | crngring 19976 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
33 | 18, 31, 32 | mp2b 10 | . . . . 5 ⊢ 𝑅 ∈ Ring |
34 | 4, 5 | ring0cl 19990 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
35 | 33, 34 | mp1i 13 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑅) ∈ (Base‘𝑅)) |
36 | 2on0 8428 | . . . . . 6 ⊢ 2o ≠ ∅ | |
37 | 2on 8426 | . . . . . . 7 ⊢ 2o ∈ On | |
38 | on0eln0 6373 | . . . . . . 7 ⊢ (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅)) | |
39 | 37, 38 | ax-mp 5 | . . . . . 6 ⊢ (∅ ∈ 2o ↔ 2o ≠ ∅) |
40 | 36, 39 | mpbir 230 | . . . . 5 ⊢ ∅ ∈ 2o |
41 | 40 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ∅ ∈ 2o) |
42 | 6, 11, 12, 30, 35, 41 | mapfien2 9345 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
43 | 10, 42 | eqbrtrrd 5129 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
44 | 11 | pwfi2en 41410 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) |
45 | entr 8946 | . 2 ⊢ ((𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | |
46 | 43, 44, 45 | syl2anc 584 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 {crab 3407 Vcvv 3445 ∩ cin 3909 ∅c0 4282 𝒫 cpw 4560 class class class wbr 5105 Oncon0 6317 ‘cfv 6496 (class class class)co 7357 ωcom 7802 2oc2o 8406 ↑m cmap 8765 ≈ cen 8880 Fincfn 8883 finSupp cfsupp 9305 ℕcn 12153 2c2 12208 ℕ0cn0 12413 ♯chash 14230 Basecbs 17083 0gc0g 17321 Ringcrg 19964 CRingccrg 19965 ℤ/nℤczn 20903 freeLMod cfrlm 21152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-er 8648 df-ec 8650 df-qs 8654 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-inf 9379 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-hash 14231 df-dvds 16137 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-imas 17390 df-qus 17391 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-nsg 18926 df-eqg 18927 df-ghm 19006 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-rnghom 20146 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lsp 20433 df-sra 20633 df-rgmod 20634 df-lidl 20635 df-rsp 20636 df-2idl 20702 df-cnfld 20797 df-zring 20870 df-zrh 20904 df-zn 20907 df-dsmm 21138 df-frlm 21153 |
This theorem is referenced by: isnumbasgrplem3 41418 |
Copyright terms: Public domain | W3C validator |