Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmpwfi Structured version   Visualization version   GIF version

Theorem frlmpwfi 43091
Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
frlmpwfi.r 𝑅 = (ℤ/nℤ‘2)
frlmpwfi.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmpwfi.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
frlmpwfi (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))

Proof of Theorem frlmpwfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frlmpwfi.r . . . . . 6 𝑅 = (ℤ/nℤ‘2)
21fvexi 6836 . . . . 5 𝑅 ∈ V
3 frlmpwfi.y . . . . . 6 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
6 eqid 2729 . . . . . 6 {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)}
73, 4, 5, 6frlmbas 21662 . . . . 5 ((𝑅 ∈ V ∧ 𝐼𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
82, 7mpan 690 . . . 4 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
9 frlmpwfi.b . . . 4 𝐵 = (Base‘𝑌)
108, 9eqtr4di 2782 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = 𝐵)
11 eqid 2729 . . . 4 {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅}
12 enrefg 8909 . . . 4 (𝐼𝑉𝐼𝐼)
13 2nn 12201 . . . . . . . 8 2 ∈ ℕ
141, 4znhash 21465 . . . . . . . 8 (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2)
1513, 14ax-mp 5 . . . . . . 7 (♯‘(Base‘𝑅)) = 2
16 hash2 14312 . . . . . . 7 (♯‘2o) = 2
1715, 16eqtr4i 2755 . . . . . 6 (♯‘(Base‘𝑅)) = (♯‘2o)
18 2nn0 12401 . . . . . . . . 9 2 ∈ ℕ0
1915, 18eqeltri 2824 . . . . . . . 8 (♯‘(Base‘𝑅)) ∈ ℕ0
20 fvex 6835 . . . . . . . . 9 (Base‘𝑅) ∈ V
21 hashclb 14265 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0))
2220, 21ax-mp 5 . . . . . . . 8 ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)
2319, 22mpbir 231 . . . . . . 7 (Base‘𝑅) ∈ Fin
24 2onn 8560 . . . . . . . 8 2o ∈ ω
25 nnfi 9081 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2624, 25ax-mp 5 . . . . . . 7 2o ∈ Fin
27 hashen 14254 . . . . . . 7 (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o))
2823, 26, 27mp2an 692 . . . . . 6 ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)
2917, 28mpbi 230 . . . . 5 (Base‘𝑅) ≈ 2o
3029a1i 11 . . . 4 (𝐼𝑉 → (Base‘𝑅) ≈ 2o)
311zncrng 21451 . . . . . 6 (2 ∈ ℕ0𝑅 ∈ CRing)
32 crngring 20130 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3318, 31, 32mp2b 10 . . . . 5 𝑅 ∈ Ring
344, 5ring0cl 20152 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3533, 34mp1i 13 . . . 4 (𝐼𝑉 → (0g𝑅) ∈ (Base‘𝑅))
36 2on0 8402 . . . . . 6 2o ≠ ∅
37 2on 8401 . . . . . . 7 2o ∈ On
38 on0eln0 6364 . . . . . . 7 (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅))
3937, 38ax-mp 5 . . . . . 6 (∅ ∈ 2o ↔ 2o ≠ ∅)
4036, 39mpbir 231 . . . . 5 ∅ ∈ 2o
4140a1i 11 . . . 4 (𝐼𝑉 → ∅ ∈ 2o)
426, 11, 12, 30, 35, 41mapfien2 9299 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅})
4310, 42eqbrtrrd 5116 . 2 (𝐼𝑉𝐵 ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅})
4411pwfi2en 43090 . 2 (𝐼𝑉 → {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin))
45 entr 8931 . 2 ((𝐵 ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin))
4643, 44, 45syl2anc 584 1 (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cin 3902  c0 4284  𝒫 cpw 4551   class class class wbr 5092  Oncon0 6307  cfv 6482  (class class class)co 7349  ωcom 7799  2oc2o 8382  m cmap 8753  cen 8869  Fincfn 8872   finSupp cfsupp 9251  cn 12128  2c2 12183  0cn0 12384  chash 14237  Basecbs 17120  0gc0g 17343  Ringcrg 20118  CRingccrg 20119  ℤ/nczn 21409   freeLMod cfrlm 21653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-hash 14238  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413  df-dsmm 21639  df-frlm 21654
This theorem is referenced by:  isnumbasgrplem3  43098
  Copyright terms: Public domain W3C validator