| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmpwfi | Structured version Visualization version GIF version | ||
| Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| frlmpwfi.r | ⊢ 𝑅 = (ℤ/nℤ‘2) |
| frlmpwfi.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmpwfi.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| frlmpwfi | ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmpwfi.r | . . . . . 6 ⊢ 𝑅 = (ℤ/nℤ‘2) | |
| 2 | 1 | fvexi 6872 | . . . . 5 ⊢ 𝑅 ∈ V |
| 3 | frlmpwfi.y | . . . . . 6 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} | |
| 7 | 3, 4, 5, 6 | frlmbas 21664 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
| 8 | 2, 7 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
| 9 | frlmpwfi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 10 | 8, 9 | eqtr4di 2782 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = 𝐵) |
| 11 | eqid 2729 | . . . 4 ⊢ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} | |
| 12 | enrefg 8955 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼) | |
| 13 | 2nn 12259 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 14 | 1, 4 | znhash 21468 | . . . . . . . 8 ⊢ (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2) |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘(Base‘𝑅)) = 2 |
| 16 | hash2 14370 | . . . . . . 7 ⊢ (♯‘2o) = 2 | |
| 17 | 15, 16 | eqtr4i 2755 | . . . . . 6 ⊢ (♯‘(Base‘𝑅)) = (♯‘2o) |
| 18 | 2nn0 12459 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 19 | 15, 18 | eqeltri 2824 | . . . . . . . 8 ⊢ (♯‘(Base‘𝑅)) ∈ ℕ0 |
| 20 | fvex 6871 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
| 21 | hashclb 14323 | . . . . . . . . 9 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0) |
| 23 | 19, 22 | mpbir 231 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ Fin |
| 24 | 2onn 8606 | . . . . . . . 8 ⊢ 2o ∈ ω | |
| 25 | nnfi 9131 | . . . . . . . 8 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . . 7 ⊢ 2o ∈ Fin |
| 27 | hashen 14312 | . . . . . . 7 ⊢ (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)) | |
| 28 | 23, 26, 27 | mp2an 692 | . . . . . 6 ⊢ ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o) |
| 29 | 17, 28 | mpbi 230 | . . . . 5 ⊢ (Base‘𝑅) ≈ 2o |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑅) ≈ 2o) |
| 31 | 1 | zncrng 21454 | . . . . . 6 ⊢ (2 ∈ ℕ0 → 𝑅 ∈ CRing) |
| 32 | crngring 20154 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 33 | 18, 31, 32 | mp2b 10 | . . . . 5 ⊢ 𝑅 ∈ Ring |
| 34 | 4, 5 | ring0cl 20176 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 35 | 33, 34 | mp1i 13 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 36 | 2on0 8448 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 37 | 2on 8447 | . . . . . . 7 ⊢ 2o ∈ On | |
| 38 | on0eln0 6389 | . . . . . . 7 ⊢ (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅)) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . 6 ⊢ (∅ ∈ 2o ↔ 2o ≠ ∅) |
| 40 | 36, 39 | mpbir 231 | . . . . 5 ⊢ ∅ ∈ 2o |
| 41 | 40 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ∅ ∈ 2o) |
| 42 | 6, 11, 12, 30, 35, 41 | mapfien2 9360 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
| 43 | 10, 42 | eqbrtrrd 5131 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅}) |
| 44 | 11 | pwfi2en 43086 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) |
| 45 | entr 8977 | . 2 ⊢ ((𝐵 ≈ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2o ↑m 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | |
| 46 | 43, 44, 45 | syl2anc 584 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ∩ cin 3913 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 Oncon0 6332 ‘cfv 6511 (class class class)co 7387 ωcom 7842 2oc2o 8428 ↑m cmap 8799 ≈ cen 8915 Fincfn 8918 finSupp cfsupp 9312 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ♯chash 14295 Basecbs 17179 0gc0g 17402 Ringcrg 20142 CRingccrg 20143 ℤ/nℤczn 21412 freeLMod cfrlm 21655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-hash 14296 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-zn 21416 df-dsmm 21641 df-frlm 21656 |
| This theorem is referenced by: isnumbasgrplem3 43094 |
| Copyright terms: Public domain | W3C validator |