Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmpwfi Structured version   Visualization version   GIF version

Theorem frlmpwfi 39889
 Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
frlmpwfi.r 𝑅 = (ℤ/nℤ‘2)
frlmpwfi.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmpwfi.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
frlmpwfi (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))

Proof of Theorem frlmpwfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frlmpwfi.r . . . . . 6 𝑅 = (ℤ/nℤ‘2)
21fvexi 6667 . . . . 5 𝑅 ∈ V
3 frlmpwfi.y . . . . . 6 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2824 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2824 . . . . . 6 (0g𝑅) = (0g𝑅)
6 eqid 2824 . . . . . 6 {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)}
73, 4, 5, 6frlmbas 20887 . . . . 5 ((𝑅 ∈ V ∧ 𝐼𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
82, 7mpan 689 . . . 4 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
9 frlmpwfi.b . . . 4 𝐵 = (Base‘𝑌)
108, 9syl6eqr 2877 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = 𝐵)
11 eqid 2824 . . . 4 {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅}
12 enrefg 8526 . . . 4 (𝐼𝑉𝐼𝐼)
13 2nn 11698 . . . . . . . 8 2 ∈ ℕ
141, 4znhash 20693 . . . . . . . 8 (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2)
1513, 14ax-mp 5 . . . . . . 7 (♯‘(Base‘𝑅)) = 2
16 hash2 13762 . . . . . . 7 (♯‘2o) = 2
1715, 16eqtr4i 2850 . . . . . 6 (♯‘(Base‘𝑅)) = (♯‘2o)
18 2nn0 11902 . . . . . . . . 9 2 ∈ ℕ0
1915, 18eqeltri 2912 . . . . . . . 8 (♯‘(Base‘𝑅)) ∈ ℕ0
20 fvex 6666 . . . . . . . . 9 (Base‘𝑅) ∈ V
21 hashclb 13715 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0))
2220, 21ax-mp 5 . . . . . . . 8 ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)
2319, 22mpbir 234 . . . . . . 7 (Base‘𝑅) ∈ Fin
24 2onn 8251 . . . . . . . 8 2o ∈ ω
25 nnfi 8698 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2624, 25ax-mp 5 . . . . . . 7 2o ∈ Fin
27 hashen 13703 . . . . . . 7 (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o))
2823, 26, 27mp2an 691 . . . . . 6 ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)
2917, 28mpbi 233 . . . . 5 (Base‘𝑅) ≈ 2o
3029a1i 11 . . . 4 (𝐼𝑉 → (Base‘𝑅) ≈ 2o)
311zncrng 20679 . . . . . 6 (2 ∈ ℕ0𝑅 ∈ CRing)
32 crngring 19299 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3318, 31, 32mp2b 10 . . . . 5 𝑅 ∈ Ring
344, 5ring0cl 19310 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3533, 34mp1i 13 . . . 4 (𝐼𝑉 → (0g𝑅) ∈ (Base‘𝑅))
36 2on0 8098 . . . . . 6 2o ≠ ∅
37 2on 8096 . . . . . . 7 2o ∈ On
38 on0eln0 6229 . . . . . . 7 (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅))
3937, 38ax-mp 5 . . . . . 6 (∅ ∈ 2o ↔ 2o ≠ ∅)
4036, 39mpbir 234 . . . . 5 ∅ ∈ 2o
4140a1i 11 . . . 4 (𝐼𝑉 → ∅ ∈ 2o)
426, 11, 12, 30, 35, 41mapfien2 8858 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅})
4310, 42eqbrtrrd 5073 . 2 (𝐼𝑉𝐵 ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅})
4411pwfi2en 39888 . 2 (𝐼𝑉 → {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin))
45 entr 8546 . 2 ((𝐵 ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin))
4643, 44, 45syl2anc 587 1 (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  {crab 3136  Vcvv 3479   ∩ cin 3917  ∅c0 4274  𝒫 cpw 4520   class class class wbr 5049  Oncon0 6174  ‘cfv 6338  (class class class)co 7140  ωcom 7565  2oc2o 8081   ↑m cmap 8391   ≈ cen 8491  Fincfn 8494   finSupp cfsupp 8819  ℕcn 11625  2c2 11680  ℕ0cn0 11885  ♯chash 13686  Basecbs 16474  0gc0g 16704  Ringcrg 19288  CRingccrg 19289  ℤ/nℤczn 20638   freeLMod cfrlm 20878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602  ax-addf 10603  ax-mulf 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-supp 7816  df-tpos 7877  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-ec 8276  df-qs 8280  df-map 8393  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-sup 8892  df-inf 8893  df-dju 9316  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-hash 13687  df-dvds 15599  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-0g 16706  df-prds 16712  df-pws 16714  df-imas 16772  df-qus 16773  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-minusg 18098  df-sbg 18099  df-mulg 18216  df-subg 18267  df-nsg 18268  df-eqg 18269  df-ghm 18347  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-oppr 19364  df-dvdsr 19382  df-rnghom 19458  df-subrg 19521  df-lmod 19624  df-lss 19692  df-lsp 19732  df-sra 19932  df-rgmod 19933  df-lidl 19934  df-rsp 19935  df-2idl 19993  df-cnfld 20534  df-zring 20606  df-zrh 20639  df-zn 20642  df-dsmm 20864  df-frlm 20879 This theorem is referenced by:  isnumbasgrplem3  39896
 Copyright terms: Public domain W3C validator