Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalr Structured version   Visualization version   GIF version

Theorem goalr 33259
Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalr ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalr
Dummy variables 𝑗 𝑥 𝑘 𝑢 𝑣 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 goaln0 33255 . . 3 (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7705 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
4 suceq 6316 . . . . . . . . . . 11 (𝑥 = ∅ → suc 𝑥 = suc ∅)
54fveq2d 6760 . . . . . . . . . 10 (𝑥 = ∅ → (Fmla‘suc 𝑥) = (Fmla‘suc ∅))
65eleq2d 2824 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅)))
75eleq2d 2824 . . . . . . . . 9 (𝑥 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
86, 7imbi12d 344 . . . . . . . 8 (𝑥 = ∅ → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))))
9 suceq 6316 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
109fveq2d 6760 . . . . . . . . . 10 (𝑥 = 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑦))
1110eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦)))
1210eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑦)))
1311, 12imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦))))
14 suceq 6316 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1514fveq2d 6760 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc suc 𝑦))
1615eleq2d 2824 . . . . . . . . 9 (𝑥 = suc 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦)))
1715eleq2d 2824 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑦)))
1816, 17imbi12d 344 . . . . . . . 8 (𝑥 = suc 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
19 suceq 6316 . . . . . . . . . . 11 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2019fveq2d 6760 . . . . . . . . . 10 (𝑥 = 𝑛 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑛))
2120eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
2220eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
2321, 22imbi12d 344 . . . . . . . 8 (𝑥 = 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
24 peano1 7710 . . . . . . . . . 10 ∅ ∈ ω
25 df-goal 33204 . . . . . . . . . . 11 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
26 opex 5373 . . . . . . . . . . 11 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
2725, 26eqeltri 2835 . . . . . . . . . 10 𝑔𝑖𝑎 ∈ V
28 isfmlasuc 33250 . . . . . . . . . 10 ((∅ ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢))))
2924, 27, 28mp2an 688 . . . . . . . . 9 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)))
30 eqeq1 2742 . . . . . . . . . . . . 13 (𝑥 = ∀𝑔𝑖𝑎 → (𝑥 = (𝑘𝑔𝑗) ↔ ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
31302rexbidv 3228 . . . . . . . . . . . 12 (𝑥 = ∀𝑔𝑖𝑎 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
32 fmla0 33244 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
3331, 32elrab2 3620 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ↔ (∀𝑔𝑖𝑎 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
3425a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ∀𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩)
35 goel 33209 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
3634, 35eqeq12d 2754 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
37 2oex 8284 . . . . . . . . . . . . . . . 16 2o ∈ V
38 opex 5373 . . . . . . . . . . . . . . . 16 𝑖, 𝑎⟩ ∈ V
3937, 38opth 5385 . . . . . . . . . . . . . . 15 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩))
40 2on0 8276 . . . . . . . . . . . . . . . . 17 2o ≠ ∅
41 eqneqall 2953 . . . . . . . . . . . . . . . . 17 (2o = ∅ → (2o ≠ ∅ → 𝑎 ∈ (Fmla‘suc ∅)))
4240, 41mpi 20 . . . . . . . . . . . . . . . 16 (2o = ∅ → 𝑎 ∈ (Fmla‘suc ∅))
4342adantr 480 . . . . . . . . . . . . . . 15 ((2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩) → 𝑎 ∈ (Fmla‘suc ∅))
4439, 43sylbi 216 . . . . . . . . . . . . . 14 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅))
4536, 44syl6bi 252 . . . . . . . . . . . . 13 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4645rexlimdva 3212 . . . . . . . . . . . 12 (𝑘 ∈ ω → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4746rexlimiv 3208 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅))
4833, 47simplbiim 504 . . . . . . . . . 10 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
49 gonanegoal 33214 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
50 eqneqall 2953 . . . . . . . . . . . . . . . 16 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅)))
5149, 50mpi 20 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅))
5251eqcoms 2746 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅))
5352a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
5453rexlimdva 3212 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
55 df-goal 33204 . . . . . . . . . . . . . . 15 𝑔𝑘𝑢 = ⟨2o, ⟨𝑘, 𝑢⟩⟩
5625, 55eqeq12i 2756 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩)
5737, 38opth 5385 . . . . . . . . . . . . . . . . 17 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩))
58 vex 3426 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ V
59 vex 3426 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
6058, 59opth 5385 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ ↔ (𝑖 = 𝑘𝑎 = 𝑢))
61 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
62 fmlasssuc 33251 . . . . . . . . . . . . . . . . . . . . . 22 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
6324, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
6463sseli 3913 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
6561, 64syl6bi 252 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6665eqcoms 2746 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6760, 66simplbiim 504 . . . . . . . . . . . . . . . . 17 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6857, 67simplbiim 504 . . . . . . . . . . . . . . . 16 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6968com12 32 . . . . . . . . . . . . . . 15 (𝑢 ∈ (Fmla‘∅) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7069adantr 480 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7156, 70syl5bi 241 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7271rexlimdva 3212 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7354, 72jaod 855 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅)))
7473rexlimiv 3208 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅))
7548, 74jaoi 853 . . . . . . . . 9 ((∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)) → 𝑎 ∈ (Fmla‘suc ∅))
7629, 75sylbi 216 . . . . . . . 8 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))
77 goalrlem 33258 . . . . . . . 8 (𝑦 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
788, 13, 18, 23, 76, 77finds 7719 . . . . . . 7 (𝑛 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
7978adantr 480 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
80 fveq2 6756 . . . . . . . . 9 (𝑁 = suc 𝑛 → (Fmla‘𝑁) = (Fmla‘suc 𝑛))
8180eleq2d 2824 . . . . . . . 8 (𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
8280eleq2d 2824 . . . . . . . 8 (𝑁 = suc 𝑛 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
8381, 82imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8483adantl 481 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8579, 84mpbird 256 . . . . 5 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8685rexlimiva 3209 . . . 4 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
873, 86syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8887impancom 451 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → 𝑎 ∈ (Fmla‘𝑁)))
892, 88mpd 15 1 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  wss 3883  c0 4253  cop 4564  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  2oc2o 8261  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-map 8575  df-goel 33202  df-gona 33203  df-goal 33204  df-sat 33205  df-fmla 33207
This theorem is referenced by:  fmlasucdisj  33261
  Copyright terms: Public domain W3C validator