Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalr Structured version   Visualization version   GIF version

Theorem goalr 35391
Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalr ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalr
Dummy variables 𝑗 𝑥 𝑘 𝑢 𝑣 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 goaln0 35387 . . 3 (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7863 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
4 suceq 6403 . . . . . . . . . . 11 (𝑥 = ∅ → suc 𝑥 = suc ∅)
54fveq2d 6865 . . . . . . . . . 10 (𝑥 = ∅ → (Fmla‘suc 𝑥) = (Fmla‘suc ∅))
65eleq2d 2815 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅)))
75eleq2d 2815 . . . . . . . . 9 (𝑥 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
86, 7imbi12d 344 . . . . . . . 8 (𝑥 = ∅ → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))))
9 suceq 6403 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
109fveq2d 6865 . . . . . . . . . 10 (𝑥 = 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑦))
1110eleq2d 2815 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦)))
1210eleq2d 2815 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑦)))
1311, 12imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦))))
14 suceq 6403 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1514fveq2d 6865 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc suc 𝑦))
1615eleq2d 2815 . . . . . . . . 9 (𝑥 = suc 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦)))
1715eleq2d 2815 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑦)))
1816, 17imbi12d 344 . . . . . . . 8 (𝑥 = suc 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
19 suceq 6403 . . . . . . . . . . 11 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2019fveq2d 6865 . . . . . . . . . 10 (𝑥 = 𝑛 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑛))
2120eleq2d 2815 . . . . . . . . 9 (𝑥 = 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
2220eleq2d 2815 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
2321, 22imbi12d 344 . . . . . . . 8 (𝑥 = 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
24 peano1 7868 . . . . . . . . . 10 ∅ ∈ ω
25 df-goal 35336 . . . . . . . . . . 11 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
26 opex 5427 . . . . . . . . . . 11 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
2725, 26eqeltri 2825 . . . . . . . . . 10 𝑔𝑖𝑎 ∈ V
28 isfmlasuc 35382 . . . . . . . . . 10 ((∅ ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢))))
2924, 27, 28mp2an 692 . . . . . . . . 9 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)))
30 eqeq1 2734 . . . . . . . . . . . . 13 (𝑥 = ∀𝑔𝑖𝑎 → (𝑥 = (𝑘𝑔𝑗) ↔ ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
31302rexbidv 3203 . . . . . . . . . . . 12 (𝑥 = ∀𝑔𝑖𝑎 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
32 fmla0 35376 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
3331, 32elrab2 3665 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ↔ (∀𝑔𝑖𝑎 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
3425a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ∀𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩)
35 goel 35341 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
3634, 35eqeq12d 2746 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
37 2oex 8448 . . . . . . . . . . . . . . . 16 2o ∈ V
38 opex 5427 . . . . . . . . . . . . . . . 16 𝑖, 𝑎⟩ ∈ V
3937, 38opth 5439 . . . . . . . . . . . . . . 15 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩))
40 2on0 8451 . . . . . . . . . . . . . . . . 17 2o ≠ ∅
41 eqneqall 2937 . . . . . . . . . . . . . . . . 17 (2o = ∅ → (2o ≠ ∅ → 𝑎 ∈ (Fmla‘suc ∅)))
4240, 41mpi 20 . . . . . . . . . . . . . . . 16 (2o = ∅ → 𝑎 ∈ (Fmla‘suc ∅))
4342adantr 480 . . . . . . . . . . . . . . 15 ((2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩) → 𝑎 ∈ (Fmla‘suc ∅))
4439, 43sylbi 217 . . . . . . . . . . . . . 14 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅))
4536, 44biimtrdi 253 . . . . . . . . . . . . 13 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4645rexlimdva 3135 . . . . . . . . . . . 12 (𝑘 ∈ ω → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4746rexlimiv 3128 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅))
4833, 47simplbiim 504 . . . . . . . . . 10 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
49 gonanegoal 35346 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
50 eqneqall 2937 . . . . . . . . . . . . . . . 16 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅)))
5149, 50mpi 20 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅))
5251eqcoms 2738 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅))
5352a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
5453rexlimdva 3135 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
55 df-goal 35336 . . . . . . . . . . . . . . 15 𝑔𝑘𝑢 = ⟨2o, ⟨𝑘, 𝑢⟩⟩
5625, 55eqeq12i 2748 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩)
5737, 38opth 5439 . . . . . . . . . . . . . . . . 17 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩))
58 vex 3454 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ V
59 vex 3454 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
6058, 59opth 5439 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ ↔ (𝑖 = 𝑘𝑎 = 𝑢))
61 eleq1w 2812 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
62 fmlasssuc 35383 . . . . . . . . . . . . . . . . . . . . . 22 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
6324, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
6463sseli 3945 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
6561, 64biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6665eqcoms 2738 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6760, 66simplbiim 504 . . . . . . . . . . . . . . . . 17 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6857, 67simplbiim 504 . . . . . . . . . . . . . . . 16 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6968com12 32 . . . . . . . . . . . . . . 15 (𝑢 ∈ (Fmla‘∅) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7069adantr 480 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7156, 70biimtrid 242 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7271rexlimdva 3135 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7354, 72jaod 859 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅)))
7473rexlimiv 3128 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅))
7548, 74jaoi 857 . . . . . . . . 9 ((∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)) → 𝑎 ∈ (Fmla‘suc ∅))
7629, 75sylbi 217 . . . . . . . 8 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))
77 goalrlem 35390 . . . . . . . 8 (𝑦 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
788, 13, 18, 23, 76, 77finds 7875 . . . . . . 7 (𝑛 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
7978adantr 480 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
80 fveq2 6861 . . . . . . . . 9 (𝑁 = suc 𝑛 → (Fmla‘𝑁) = (Fmla‘suc 𝑛))
8180eleq2d 2815 . . . . . . . 8 (𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
8280eleq2d 2815 . . . . . . . 8 (𝑁 = suc 𝑛 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
8381, 82imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8483adantl 481 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8579, 84mpbird 257 . . . . 5 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8685rexlimiva 3127 . . . 4 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
873, 86syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8887impancom 451 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → 𝑎 ∈ (Fmla‘𝑁)))
892, 88mpd 15 1 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  wss 3917  c0 4299  cop 4598  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  2oc2o 8431  𝑔cgoe 35327  𝑔cgna 35328  𝑔cgol 35329  Fmlacfmla 35331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-map 8804  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-fmla 35339
This theorem is referenced by:  fmlasucdisj  35393
  Copyright terms: Public domain W3C validator