Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalr Structured version   Visualization version   GIF version

Theorem goalr 34376
Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalr ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalr
Dummy variables 𝑗 𝑥 𝑘 𝑢 𝑣 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 goaln0 34372 . . 3 (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 482 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7869 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
4 suceq 6427 . . . . . . . . . . 11 (𝑥 = ∅ → suc 𝑥 = suc ∅)
54fveq2d 6892 . . . . . . . . . 10 (𝑥 = ∅ → (Fmla‘suc 𝑥) = (Fmla‘suc ∅))
65eleq2d 2819 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅)))
75eleq2d 2819 . . . . . . . . 9 (𝑥 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
86, 7imbi12d 344 . . . . . . . 8 (𝑥 = ∅ → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))))
9 suceq 6427 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
109fveq2d 6892 . . . . . . . . . 10 (𝑥 = 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑦))
1110eleq2d 2819 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦)))
1210eleq2d 2819 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑦)))
1311, 12imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦))))
14 suceq 6427 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1514fveq2d 6892 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc suc 𝑦))
1615eleq2d 2819 . . . . . . . . 9 (𝑥 = suc 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦)))
1715eleq2d 2819 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑦)))
1816, 17imbi12d 344 . . . . . . . 8 (𝑥 = suc 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
19 suceq 6427 . . . . . . . . . . 11 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2019fveq2d 6892 . . . . . . . . . 10 (𝑥 = 𝑛 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑛))
2120eleq2d 2819 . . . . . . . . 9 (𝑥 = 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
2220eleq2d 2819 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
2321, 22imbi12d 344 . . . . . . . 8 (𝑥 = 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
24 peano1 7875 . . . . . . . . . 10 ∅ ∈ ω
25 df-goal 34321 . . . . . . . . . . 11 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
26 opex 5463 . . . . . . . . . . 11 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
2725, 26eqeltri 2829 . . . . . . . . . 10 𝑔𝑖𝑎 ∈ V
28 isfmlasuc 34367 . . . . . . . . . 10 ((∅ ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢))))
2924, 27, 28mp2an 690 . . . . . . . . 9 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)))
30 eqeq1 2736 . . . . . . . . . . . . 13 (𝑥 = ∀𝑔𝑖𝑎 → (𝑥 = (𝑘𝑔𝑗) ↔ ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
31302rexbidv 3219 . . . . . . . . . . . 12 (𝑥 = ∀𝑔𝑖𝑎 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
32 fmla0 34361 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
3331, 32elrab2 3685 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ↔ (∀𝑔𝑖𝑎 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
3425a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ∀𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩)
35 goel 34326 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
3634, 35eqeq12d 2748 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
37 2oex 8473 . . . . . . . . . . . . . . . 16 2o ∈ V
38 opex 5463 . . . . . . . . . . . . . . . 16 𝑖, 𝑎⟩ ∈ V
3937, 38opth 5475 . . . . . . . . . . . . . . 15 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩))
40 2on0 8478 . . . . . . . . . . . . . . . . 17 2o ≠ ∅
41 eqneqall 2951 . . . . . . . . . . . . . . . . 17 (2o = ∅ → (2o ≠ ∅ → 𝑎 ∈ (Fmla‘suc ∅)))
4240, 41mpi 20 . . . . . . . . . . . . . . . 16 (2o = ∅ → 𝑎 ∈ (Fmla‘suc ∅))
4342adantr 481 . . . . . . . . . . . . . . 15 ((2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩) → 𝑎 ∈ (Fmla‘suc ∅))
4439, 43sylbi 216 . . . . . . . . . . . . . 14 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅))
4536, 44syl6bi 252 . . . . . . . . . . . . 13 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4645rexlimdva 3155 . . . . . . . . . . . 12 (𝑘 ∈ ω → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4746rexlimiv 3148 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅))
4833, 47simplbiim 505 . . . . . . . . . 10 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
49 gonanegoal 34331 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
50 eqneqall 2951 . . . . . . . . . . . . . . . 16 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅)))
5149, 50mpi 20 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅))
5251eqcoms 2740 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅))
5352a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
5453rexlimdva 3155 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
55 df-goal 34321 . . . . . . . . . . . . . . 15 𝑔𝑘𝑢 = ⟨2o, ⟨𝑘, 𝑢⟩⟩
5625, 55eqeq12i 2750 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩)
5737, 38opth 5475 . . . . . . . . . . . . . . . . 17 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩))
58 vex 3478 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ V
59 vex 3478 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
6058, 59opth 5475 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ ↔ (𝑖 = 𝑘𝑎 = 𝑢))
61 eleq1w 2816 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
62 fmlasssuc 34368 . . . . . . . . . . . . . . . . . . . . . 22 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
6324, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
6463sseli 3977 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
6561, 64syl6bi 252 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6665eqcoms 2740 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6760, 66simplbiim 505 . . . . . . . . . . . . . . . . 17 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6857, 67simplbiim 505 . . . . . . . . . . . . . . . 16 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6968com12 32 . . . . . . . . . . . . . . 15 (𝑢 ∈ (Fmla‘∅) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7069adantr 481 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7156, 70biimtrid 241 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7271rexlimdva 3155 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7354, 72jaod 857 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅)))
7473rexlimiv 3148 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅))
7548, 74jaoi 855 . . . . . . . . 9 ((∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)) → 𝑎 ∈ (Fmla‘suc ∅))
7629, 75sylbi 216 . . . . . . . 8 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))
77 goalrlem 34375 . . . . . . . 8 (𝑦 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
788, 13, 18, 23, 76, 77finds 7885 . . . . . . 7 (𝑛 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
7978adantr 481 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
80 fveq2 6888 . . . . . . . . 9 (𝑁 = suc 𝑛 → (Fmla‘𝑁) = (Fmla‘suc 𝑛))
8180eleq2d 2819 . . . . . . . 8 (𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
8280eleq2d 2819 . . . . . . . 8 (𝑁 = suc 𝑛 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
8381, 82imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8483adantl 482 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8579, 84mpbird 256 . . . . 5 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8685rexlimiva 3147 . . . 4 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
873, 86syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8887impancom 452 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → 𝑎 ∈ (Fmla‘𝑁)))
892, 88mpd 15 1 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  wss 3947  c0 4321  cop 4633  suc csuc 6363  cfv 6540  (class class class)co 7405  ωcom 7851  2oc2o 8456  𝑔cgoe 34312  𝑔cgna 34313  𝑔cgol 34314  Fmlacfmla 34316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-map 8818  df-goel 34319  df-gona 34320  df-goal 34321  df-sat 34322  df-fmla 34324
This theorem is referenced by:  fmlasucdisj  34378
  Copyright terms: Public domain W3C validator