Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalr Structured version   Visualization version   GIF version

Theorem goalr 35441
Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalr ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalr
Dummy variables 𝑗 𝑥 𝑘 𝑢 𝑣 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 goaln0 35437 . . 3 (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
21adantl 481 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑁 ≠ ∅)
3 nnsuc 7814 . . . 4 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
4 suceq 6374 . . . . . . . . . . 11 (𝑥 = ∅ → suc 𝑥 = suc ∅)
54fveq2d 6826 . . . . . . . . . 10 (𝑥 = ∅ → (Fmla‘suc 𝑥) = (Fmla‘suc ∅))
65eleq2d 2817 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅)))
75eleq2d 2817 . . . . . . . . 9 (𝑥 = ∅ → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc ∅)))
86, 7imbi12d 344 . . . . . . . 8 (𝑥 = ∅ → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))))
9 suceq 6374 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
109fveq2d 6826 . . . . . . . . . 10 (𝑥 = 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑦))
1110eleq2d 2817 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦)))
1210eleq2d 2817 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑦)))
1311, 12imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦))))
14 suceq 6374 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1514fveq2d 6826 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (Fmla‘suc 𝑥) = (Fmla‘suc suc 𝑦))
1615eleq2d 2817 . . . . . . . . 9 (𝑥 = suc 𝑦 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦)))
1715eleq2d 2817 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc suc 𝑦)))
1816, 17imbi12d 344 . . . . . . . 8 (𝑥 = suc 𝑦 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
19 suceq 6374 . . . . . . . . . . 11 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2019fveq2d 6826 . . . . . . . . . 10 (𝑥 = 𝑛 → (Fmla‘suc 𝑥) = (Fmla‘suc 𝑛))
2120eleq2d 2817 . . . . . . . . 9 (𝑥 = 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
2220eleq2d 2817 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑎 ∈ (Fmla‘suc 𝑥) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
2321, 22imbi12d 344 . . . . . . . 8 (𝑥 = 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑥) → 𝑎 ∈ (Fmla‘suc 𝑥)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
24 peano1 7819 . . . . . . . . . 10 ∅ ∈ ω
25 df-goal 35386 . . . . . . . . . . 11 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
26 opex 5402 . . . . . . . . . . 11 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
2725, 26eqeltri 2827 . . . . . . . . . 10 𝑔𝑖𝑎 ∈ V
28 isfmlasuc 35432 . . . . . . . . . 10 ((∅ ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢))))
2924, 27, 28mp2an 692 . . . . . . . . 9 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)))
30 eqeq1 2735 . . . . . . . . . . . . 13 (𝑥 = ∀𝑔𝑖𝑎 → (𝑥 = (𝑘𝑔𝑗) ↔ ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
31302rexbidv 3197 . . . . . . . . . . . 12 (𝑥 = ∀𝑔𝑖𝑎 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
32 fmla0 35426 . . . . . . . . . . . 12 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
3331, 32elrab2 3645 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ↔ (∀𝑔𝑖𝑎 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗)))
3425a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ∀𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩)
35 goel 35391 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
3634, 35eqeq12d 2747 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
37 2oex 8396 . . . . . . . . . . . . . . . 16 2o ∈ V
38 opex 5402 . . . . . . . . . . . . . . . 16 𝑖, 𝑎⟩ ∈ V
3937, 38opth 5414 . . . . . . . . . . . . . . 15 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩))
40 2on0 8399 . . . . . . . . . . . . . . . . 17 2o ≠ ∅
41 eqneqall 2939 . . . . . . . . . . . . . . . . 17 (2o = ∅ → (2o ≠ ∅ → 𝑎 ∈ (Fmla‘suc ∅)))
4240, 41mpi 20 . . . . . . . . . . . . . . . 16 (2o = ∅ → 𝑎 ∈ (Fmla‘suc ∅))
4342adantr 480 . . . . . . . . . . . . . . 15 ((2o = ∅ ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑗⟩) → 𝑎 ∈ (Fmla‘suc ∅))
4439, 43sylbi 217 . . . . . . . . . . . . . 14 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅))
4536, 44biimtrdi 253 . . . . . . . . . . . . 13 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4645rexlimdva 3133 . . . . . . . . . . . 12 (𝑘 ∈ ω → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅)))
4746rexlimiv 3126 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = (𝑘𝑔𝑗) → 𝑎 ∈ (Fmla‘suc ∅))
4833, 47simplbiim 504 . . . . . . . . . 10 (∀𝑔𝑖𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
49 gonanegoal 35396 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
50 eqneqall 2939 . . . . . . . . . . . . . . . 16 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅)))
5149, 50mpi 20 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc ∅))
5251eqcoms 2739 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅))
5352a1i 11 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑣 ∈ (Fmla‘∅)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
5453rexlimdva 3133 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc ∅)))
55 df-goal 35386 . . . . . . . . . . . . . . 15 𝑔𝑘𝑢 = ⟨2o, ⟨𝑘, 𝑢⟩⟩
5625, 55eqeq12i 2749 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩)
5737, 38opth 5414 . . . . . . . . . . . . . . . . 17 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩))
58 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ V
59 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
6058, 59opth 5414 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ ↔ (𝑖 = 𝑘𝑎 = 𝑢))
61 eleq1w 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) ↔ 𝑎 ∈ (Fmla‘∅)))
62 fmlasssuc 35433 . . . . . . . . . . . . . . . . . . . . . 22 (∅ ∈ ω → (Fmla‘∅) ⊆ (Fmla‘suc ∅))
6324, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (Fmla‘∅) ⊆ (Fmla‘suc ∅)
6463sseli 3925 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅))
6561, 64biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6665eqcoms 2739 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6760, 66simplbiim 504 . . . . . . . . . . . . . . . . 17 (⟨𝑖, 𝑎⟩ = ⟨𝑘, 𝑢⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6857, 67simplbiim 504 . . . . . . . . . . . . . . . 16 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → (𝑢 ∈ (Fmla‘∅) → 𝑎 ∈ (Fmla‘suc ∅)))
6968com12 32 . . . . . . . . . . . . . . 15 (𝑢 ∈ (Fmla‘∅) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7069adantr 480 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑘, 𝑢⟩⟩ → 𝑎 ∈ (Fmla‘suc ∅)))
7156, 70biimtrid 242 . . . . . . . . . . . . 13 ((𝑢 ∈ (Fmla‘∅) ∧ 𝑘 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7271rexlimdva 3133 . . . . . . . . . . . 12 (𝑢 ∈ (Fmla‘∅) → (∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢𝑎 ∈ (Fmla‘suc ∅)))
7354, 72jaod 859 . . . . . . . . . . 11 (𝑢 ∈ (Fmla‘∅) → ((∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅)))
7473rexlimiv 3126 . . . . . . . . . 10 (∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢) → 𝑎 ∈ (Fmla‘suc ∅))
7548, 74jaoi 857 . . . . . . . . 9 ((∀𝑔𝑖𝑎 ∈ (Fmla‘∅) ∨ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑘 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑘𝑢)) → 𝑎 ∈ (Fmla‘suc ∅))
7629, 75sylbi 217 . . . . . . . 8 (∀𝑔𝑖𝑎 ∈ (Fmla‘suc ∅) → 𝑎 ∈ (Fmla‘suc ∅))
77 goalrlem 35440 . . . . . . . 8 (𝑦 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑦) → 𝑎 ∈ (Fmla‘suc 𝑦)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑦) → 𝑎 ∈ (Fmla‘suc suc 𝑦))))
788, 13, 18, 23, 76, 77finds 7826 . . . . . . 7 (𝑛 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
7978adantr 480 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛)))
80 fveq2 6822 . . . . . . . . 9 (𝑁 = suc 𝑛 → (Fmla‘𝑁) = (Fmla‘suc 𝑛))
8180eleq2d 2817 . . . . . . . 8 (𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛)))
8280eleq2d 2817 . . . . . . . 8 (𝑁 = suc 𝑛 → (𝑎 ∈ (Fmla‘𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑛)))
8381, 82imbi12d 344 . . . . . . 7 (𝑁 = suc 𝑛 → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8483adantl 481 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑛) → 𝑎 ∈ (Fmla‘suc 𝑛))))
8579, 84mpbird 257 . . . . 5 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8685rexlimiva 3125 . . . 4 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
873, 86syl 17 . . 3 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁) → 𝑎 ∈ (Fmla‘𝑁)))
8887impancom 451 . 2 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → (𝑁 ≠ ∅ → 𝑎 ∈ (Fmla‘𝑁)))
892, 88mpd 15 1 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3897  c0 4280  cop 4579  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796  2oc2o 8379  𝑔cgoe 35377  𝑔cgna 35378  𝑔cgol 35379  Fmlacfmla 35381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-map 8752  df-goel 35384  df-gona 35385  df-goal 35386  df-sat 35387  df-fmla 35389
This theorem is referenced by:  fmlasucdisj  35443
  Copyright terms: Public domain W3C validator