Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1oequni2o Structured version   Visualization version   GIF version

Theorem 1oequni2o 37310
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
1oequni2o 1o = 2o

Proof of Theorem 1oequni2o
StepHypRef Expression
1 df-2o 8490 . . 3 2o = suc 1o
2 2on 8503 . . . 4 2o ∈ On
3 2on0 8505 . . . 4 2o ≠ ∅
4 2onn 8663 . . . . 5 2o ∈ ω
5 nnlim 7884 . . . . 5 (2o ∈ ω → ¬ Lim 2o)
64, 5ax-mp 5 . . . 4 ¬ Lim 2o
7 onsucuni3 37309 . . . 4 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc 2o)
82, 3, 6, 7mp3an 1462 . . 3 2o = suc 2o
91, 8eqtr3i 2759 . 2 suc 1o = suc 2o
10 1on 8501 . . 3 1o ∈ On
11 onuni 7791 . . . 4 (2o ∈ On → 2o ∈ On)
122, 11ax-mp 5 . . 3 2o ∈ On
13 suc11 6472 . . 3 ((1o ∈ On ∧ 2o ∈ On) → (suc 1o = suc 2o ↔ 1o = 2o))
1410, 12, 13mp2an 692 . 2 (suc 1o = suc 2o ↔ 1o = 2o)
159, 14mpbi 230 1 1o = 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wcel 2107  wne 2931  c0 4315   cuni 4889  Oncon0 6365  Lim wlim 6366  suc csuc 6367  ωcom 7870  1oc1o 8482  2oc2o 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-om 7871  df-1o 8489  df-2o 8490
This theorem is referenced by:  finxpreclem4  37336
  Copyright terms: Public domain W3C validator