Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1oequni2o Structured version   Visualization version   GIF version

Theorem 1oequni2o 35151
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
1oequni2o 1o = 2o

Proof of Theorem 1oequni2o
StepHypRef Expression
1 df-2o 8125 . . 3 2o = suc 1o
2 2on 8132 . . . 4 2o ∈ On
3 2on0 8133 . . . 4 2o ≠ ∅
4 2onn 8290 . . . . 5 2o ∈ ω
5 nnlim 7606 . . . . 5 (2o ∈ ω → ¬ Lim 2o)
64, 5ax-mp 5 . . . 4 ¬ Lim 2o
7 onsucuni3 35150 . . . 4 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc 2o)
82, 3, 6, 7mp3an 1462 . . 3 2o = suc 2o
91, 8eqtr3i 2763 . 2 suc 1o = suc 2o
10 1on 8131 . . 3 1o ∈ On
11 onuni 7521 . . . 4 (2o ∈ On → 2o ∈ On)
122, 11ax-mp 5 . . 3 2o ∈ On
13 suc11 6269 . . 3 ((1o ∈ On ∧ 2o ∈ On) → (suc 1o = suc 2o ↔ 1o = 2o))
1410, 12, 13mp2an 692 . 2 (suc 1o = suc 2o ↔ 1o = 2o)
159, 14mpbi 233 1 1o = 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1542  wcel 2113  wne 2934  c0 4209   cuni 4793  Oncon0 6166  Lim wlim 6167  suc csuc 6168  ωcom 7593  1oc1o 8117  2oc2o 8118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-tr 5134  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-om 7594  df-1o 8124  df-2o 8125
This theorem is referenced by:  finxpreclem4  35177
  Copyright terms: Public domain W3C validator