Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1oequni2o Structured version   Visualization version   GIF version

Theorem 1oequni2o 37283
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
1oequni2o 1o = 2o

Proof of Theorem 1oequni2o
StepHypRef Expression
1 df-2o 8519 . . 3 2o = suc 1o
2 2on 8532 . . . 4 2o ∈ On
3 2on0 8534 . . . 4 2o ≠ ∅
4 2onn 8694 . . . . 5 2o ∈ ω
5 nnlim 7913 . . . . 5 (2o ∈ ω → ¬ Lim 2o)
64, 5ax-mp 5 . . . 4 ¬ Lim 2o
7 onsucuni3 37282 . . . 4 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc 2o)
82, 3, 6, 7mp3an 1461 . . 3 2o = suc 2o
91, 8eqtr3i 2764 . 2 suc 1o = suc 2o
10 1on 8530 . . 3 1o ∈ On
11 onuni 7820 . . . 4 (2o ∈ On → 2o ∈ On)
122, 11ax-mp 5 . . 3 2o ∈ On
13 suc11 6501 . . 3 ((1o ∈ On ∧ 2o ∈ On) → (suc 1o = suc 2o ↔ 1o = 2o))
1410, 12, 13mp2an 691 . 2 (suc 1o = suc 2o ↔ 1o = 2o)
159, 14mpbi 230 1 1o = 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2103  wne 2942  c0 4347   cuni 4931  Oncon0 6394  Lim wlim 6395  suc csuc 6396  ωcom 7899  1oc1o 8511  2oc2o 8512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-tr 5287  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-om 7900  df-1o 8518  df-2o 8519
This theorem is referenced by:  finxpreclem4  37309
  Copyright terms: Public domain W3C validator