![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version |
Description: The ordinal number 1𝑜 is the predecessor of the ordinal number 2𝑜. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
1oequni2o | ⊢ 1𝑜 = ∪ 2𝑜 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 7800 | . . 3 ⊢ 2𝑜 = suc 1𝑜 | |
2 | 2on 7808 | . . . 4 ⊢ 2𝑜 ∈ On | |
3 | 2on0 7809 | . . . 4 ⊢ 2𝑜 ≠ ∅ | |
4 | 2onn 7960 | . . . . 5 ⊢ 2𝑜 ∈ ω | |
5 | nnlim 7312 | . . . . 5 ⊢ (2𝑜 ∈ ω → ¬ Lim 2𝑜) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2𝑜 |
7 | onsucuni3 33713 | . . . 4 ⊢ ((2𝑜 ∈ On ∧ 2𝑜 ≠ ∅ ∧ ¬ Lim 2𝑜) → 2𝑜 = suc ∪ 2𝑜) | |
8 | 2, 3, 6, 7 | mp3an 1586 | . . 3 ⊢ 2𝑜 = suc ∪ 2𝑜 |
9 | 1, 8 | eqtr3i 2823 | . 2 ⊢ suc 1𝑜 = suc ∪ 2𝑜 |
10 | 1on 7806 | . . 3 ⊢ 1𝑜 ∈ On | |
11 | onuni 7227 | . . . 4 ⊢ (2𝑜 ∈ On → ∪ 2𝑜 ∈ On) | |
12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2𝑜 ∈ On |
13 | suc11 6044 | . . 3 ⊢ ((1𝑜 ∈ On ∧ ∪ 2𝑜 ∈ On) → (suc 1𝑜 = suc ∪ 2𝑜 ↔ 1𝑜 = ∪ 2𝑜)) | |
14 | 10, 12, 13 | mp2an 684 | . 2 ⊢ (suc 1𝑜 = suc ∪ 2𝑜 ↔ 1𝑜 = ∪ 2𝑜) |
15 | 9, 14 | mpbi 222 | 1 ⊢ 1𝑜 = ∪ 2𝑜 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∅c0 4115 ∪ cuni 4628 Oncon0 5941 Lim wlim 5942 suc csuc 5943 ωcom 7299 1𝑜c1o 7792 2𝑜c2o 7793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-om 7300 df-1o 7799 df-2o 7800 |
This theorem is referenced by: finxpreclem4 33729 |
Copyright terms: Public domain | W3C validator |