![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version |
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
1oequni2o | ⊢ 1o = ∪ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8512 | . . 3 ⊢ 2o = suc 1o | |
2 | 2on 8525 | . . . 4 ⊢ 2o ∈ On | |
3 | 2on0 8527 | . . . 4 ⊢ 2o ≠ ∅ | |
4 | 2onn 8685 | . . . . 5 ⊢ 2o ∈ ω | |
5 | nnlim 7905 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
7 | onsucuni3 37362 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
8 | 2, 3, 6, 7 | mp3an 1461 | . . 3 ⊢ 2o = suc ∪ 2o |
9 | 1, 8 | eqtr3i 2766 | . 2 ⊢ suc 1o = suc ∪ 2o |
10 | 1on 8523 | . . 3 ⊢ 1o ∈ On | |
11 | onuni 7812 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
13 | suc11 6496 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
14 | 10, 12, 13 | mp2an 692 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
15 | 9, 14 | mpbi 230 | 1 ⊢ 1o = ∪ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∅c0 4340 ∪ cuni 4913 Oncon0 6389 Lim wlim 6390 suc csuc 6391 ωcom 7891 1oc1o 8504 2oc2o 8505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-om 7892 df-1o 8511 df-2o 8512 |
This theorem is referenced by: finxpreclem4 37389 |
Copyright terms: Public domain | W3C validator |