![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version |
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
1oequni2o | ⊢ 1o = ∪ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8519 | . . 3 ⊢ 2o = suc 1o | |
2 | 2on 8532 | . . . 4 ⊢ 2o ∈ On | |
3 | 2on0 8534 | . . . 4 ⊢ 2o ≠ ∅ | |
4 | 2onn 8694 | . . . . 5 ⊢ 2o ∈ ω | |
5 | nnlim 7913 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
7 | onsucuni3 37282 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
8 | 2, 3, 6, 7 | mp3an 1461 | . . 3 ⊢ 2o = suc ∪ 2o |
9 | 1, 8 | eqtr3i 2764 | . 2 ⊢ suc 1o = suc ∪ 2o |
10 | 1on 8530 | . . 3 ⊢ 1o ∈ On | |
11 | onuni 7820 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
13 | suc11 6501 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
14 | 10, 12, 13 | mp2an 691 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
15 | 9, 14 | mpbi 230 | 1 ⊢ 1o = ∪ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∅c0 4347 ∪ cuni 4931 Oncon0 6394 Lim wlim 6395 suc csuc 6396 ωcom 7899 1oc1o 8511 2oc2o 8512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-tr 5287 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-om 7900 df-1o 8518 df-2o 8519 |
This theorem is referenced by: finxpreclem4 37309 |
Copyright terms: Public domain | W3C validator |