| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version | ||
| Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
| Ref | Expression |
|---|---|
| 1oequni2o | ⊢ 1o = ∪ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8386 | . . 3 ⊢ 2o = suc 1o | |
| 2 | 2on 8398 | . . . 4 ⊢ 2o ∈ On | |
| 3 | 2on0 8399 | . . . 4 ⊢ 2o ≠ ∅ | |
| 4 | 2onn 8557 | . . . . 5 ⊢ 2o ∈ ω | |
| 5 | nnlim 7810 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
| 7 | onsucuni3 37409 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
| 8 | 2, 3, 6, 7 | mp3an 1463 | . . 3 ⊢ 2o = suc ∪ 2o |
| 9 | 1, 8 | eqtr3i 2756 | . 2 ⊢ suc 1o = suc ∪ 2o |
| 10 | 1on 8397 | . . 3 ⊢ 1o ∈ On | |
| 11 | onuni 7721 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
| 12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
| 13 | suc11 6415 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
| 14 | 10, 12, 13 | mp2an 692 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
| 15 | 9, 14 | mpbi 230 | 1 ⊢ 1o = ∪ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 ∪ cuni 4856 Oncon0 6306 Lim wlim 6307 suc csuc 6308 ωcom 7796 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-om 7797 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: finxpreclem4 37436 |
| Copyright terms: Public domain | W3C validator |