Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1oequni2o Structured version   Visualization version   GIF version

Theorem 1oequni2o 37342
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
1oequni2o 1o = 2o

Proof of Theorem 1oequni2o
StepHypRef Expression
1 df-2o 8389 . . 3 2o = suc 1o
2 2on 8401 . . . 4 2o ∈ On
3 2on0 8402 . . . 4 2o ≠ ∅
4 2onn 8560 . . . . 5 2o ∈ ω
5 nnlim 7813 . . . . 5 (2o ∈ ω → ¬ Lim 2o)
64, 5ax-mp 5 . . . 4 ¬ Lim 2o
7 onsucuni3 37341 . . . 4 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc 2o)
82, 3, 6, 7mp3an 1463 . . 3 2o = suc 2o
91, 8eqtr3i 2754 . 2 suc 1o = suc 2o
10 1on 8400 . . 3 1o ∈ On
11 onuni 7724 . . . 4 (2o ∈ On → 2o ∈ On)
122, 11ax-mp 5 . . 3 2o ∈ On
13 suc11 6416 . . 3 ((1o ∈ On ∧ 2o ∈ On) → (suc 1o = suc 2o ↔ 1o = 2o))
1410, 12, 13mp2an 692 . 2 (suc 1o = suc 2o ↔ 1o = 2o)
159, 14mpbi 230 1 1o = 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2925  c0 4284   cuni 4858  Oncon0 6307  Lim wlim 6308  suc csuc 6309  ωcom 7799  1oc1o 8381  2oc2o 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-om 7800  df-1o 8388  df-2o 8389
This theorem is referenced by:  finxpreclem4  37368
  Copyright terms: Public domain W3C validator