| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version | ||
| Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
| Ref | Expression |
|---|---|
| 1oequni2o | ⊢ 1o = ∪ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8389 | . . 3 ⊢ 2o = suc 1o | |
| 2 | 2on 8401 | . . . 4 ⊢ 2o ∈ On | |
| 3 | 2on0 8402 | . . . 4 ⊢ 2o ≠ ∅ | |
| 4 | 2onn 8560 | . . . . 5 ⊢ 2o ∈ ω | |
| 5 | nnlim 7813 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
| 7 | onsucuni3 37341 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
| 8 | 2, 3, 6, 7 | mp3an 1463 | . . 3 ⊢ 2o = suc ∪ 2o |
| 9 | 1, 8 | eqtr3i 2754 | . 2 ⊢ suc 1o = suc ∪ 2o |
| 10 | 1on 8400 | . . 3 ⊢ 1o ∈ On | |
| 11 | onuni 7724 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
| 12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
| 13 | suc11 6416 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
| 14 | 10, 12, 13 | mp2an 692 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
| 15 | 9, 14 | mpbi 230 | 1 ⊢ 1o = ∪ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 ∪ cuni 4858 Oncon0 6307 Lim wlim 6308 suc csuc 6309 ωcom 7799 1oc1o 8381 2oc2o 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 df-1o 8388 df-2o 8389 |
| This theorem is referenced by: finxpreclem4 37368 |
| Copyright terms: Public domain | W3C validator |