![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version |
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
1oequni2o | ⊢ 1o = ∪ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8494 | . . 3 ⊢ 2o = suc 1o | |
2 | 2on 8507 | . . . 4 ⊢ 2o ∈ On | |
3 | 2on0 8509 | . . . 4 ⊢ 2o ≠ ∅ | |
4 | 2onn 8669 | . . . . 5 ⊢ 2o ∈ ω | |
5 | nnlim 7890 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
7 | onsucuni3 36879 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
8 | 2, 3, 6, 7 | mp3an 1457 | . . 3 ⊢ 2o = suc ∪ 2o |
9 | 1, 8 | eqtr3i 2758 | . 2 ⊢ suc 1o = suc ∪ 2o |
10 | 1on 8505 | . . 3 ⊢ 1o ∈ On | |
11 | onuni 7797 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
13 | suc11 6481 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
14 | 10, 12, 13 | mp2an 690 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
15 | 9, 14 | mpbi 229 | 1 ⊢ 1o = ∪ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∅c0 4326 ∪ cuni 4912 Oncon0 6374 Lim wlim 6375 suc csuc 6376 ωcom 7876 1oc1o 8486 2oc2o 8487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-om 7877 df-1o 8493 df-2o 8494 |
This theorem is referenced by: finxpreclem4 36906 |
Copyright terms: Public domain | W3C validator |