Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version |
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
1oequni2o | ⊢ 1o = ∪ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8298 | . . 3 ⊢ 2o = suc 1o | |
2 | 2on 8311 | . . . 4 ⊢ 2o ∈ On | |
3 | 2on0 8313 | . . . 4 ⊢ 2o ≠ ∅ | |
4 | 2onn 8472 | . . . . 5 ⊢ 2o ∈ ω | |
5 | nnlim 7726 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
7 | onsucuni3 35538 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
8 | 2, 3, 6, 7 | mp3an 1460 | . . 3 ⊢ 2o = suc ∪ 2o |
9 | 1, 8 | eqtr3i 2768 | . 2 ⊢ suc 1o = suc ∪ 2o |
10 | 1on 8309 | . . 3 ⊢ 1o ∈ On | |
11 | onuni 7638 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
13 | suc11 6369 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
14 | 10, 12, 13 | mp2an 689 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
15 | 9, 14 | mpbi 229 | 1 ⊢ 1o = ∪ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ∪ cuni 4839 Oncon0 6266 Lim wlim 6267 suc csuc 6268 ωcom 7712 1oc1o 8290 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 df-1o 8297 df-2o 8298 |
This theorem is referenced by: finxpreclem4 35565 |
Copyright terms: Public domain | W3C validator |