Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1oequni2o Structured version   Visualization version   GIF version

Theorem 1oequni2o 36880
Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
1oequni2o 1o = 2o

Proof of Theorem 1oequni2o
StepHypRef Expression
1 df-2o 8494 . . 3 2o = suc 1o
2 2on 8507 . . . 4 2o ∈ On
3 2on0 8509 . . . 4 2o ≠ ∅
4 2onn 8669 . . . . 5 2o ∈ ω
5 nnlim 7890 . . . . 5 (2o ∈ ω → ¬ Lim 2o)
64, 5ax-mp 5 . . . 4 ¬ Lim 2o
7 onsucuni3 36879 . . . 4 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc 2o)
82, 3, 6, 7mp3an 1457 . . 3 2o = suc 2o
91, 8eqtr3i 2758 . 2 suc 1o = suc 2o
10 1on 8505 . . 3 1o ∈ On
11 onuni 7797 . . . 4 (2o ∈ On → 2o ∈ On)
122, 11ax-mp 5 . . 3 2o ∈ On
13 suc11 6481 . . 3 ((1o ∈ On ∧ 2o ∈ On) → (suc 1o = suc 2o ↔ 1o = 2o))
1410, 12, 13mp2an 690 . 2 (suc 1o = suc 2o ↔ 1o = 2o)
159, 14mpbi 229 1 1o = 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  wne 2937  c0 4326   cuni 4912  Oncon0 6374  Lim wlim 6375  suc csuc 6376  ωcom 7876  1oc1o 8486  2oc2o 8487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-om 7877  df-1o 8493  df-2o 8494
This theorem is referenced by:  finxpreclem4  36906
  Copyright terms: Public domain W3C validator