| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oequni2o | Structured version Visualization version GIF version | ||
| Description: The ordinal number 1o is the predecessor of the ordinal number 2o. (Contributed by ML, 19-Oct-2020.) |
| Ref | Expression |
|---|---|
| 1oequni2o | ⊢ 1o = ∪ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8490 | . . 3 ⊢ 2o = suc 1o | |
| 2 | 2on 8503 | . . . 4 ⊢ 2o ∈ On | |
| 3 | 2on0 8505 | . . . 4 ⊢ 2o ≠ ∅ | |
| 4 | 2onn 8663 | . . . . 5 ⊢ 2o ∈ ω | |
| 5 | nnlim 7884 | . . . . 5 ⊢ (2o ∈ ω → ¬ Lim 2o) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ¬ Lim 2o |
| 7 | onsucuni3 37309 | . . . 4 ⊢ ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → 2o = suc ∪ 2o) | |
| 8 | 2, 3, 6, 7 | mp3an 1462 | . . 3 ⊢ 2o = suc ∪ 2o |
| 9 | 1, 8 | eqtr3i 2759 | . 2 ⊢ suc 1o = suc ∪ 2o |
| 10 | 1on 8501 | . . 3 ⊢ 1o ∈ On | |
| 11 | onuni 7791 | . . . 4 ⊢ (2o ∈ On → ∪ 2o ∈ On) | |
| 12 | 2, 11 | ax-mp 5 | . . 3 ⊢ ∪ 2o ∈ On |
| 13 | suc11 6472 | . . 3 ⊢ ((1o ∈ On ∧ ∪ 2o ∈ On) → (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o)) | |
| 14 | 10, 12, 13 | mp2an 692 | . 2 ⊢ (suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o) |
| 15 | 9, 14 | mpbi 230 | 1 ⊢ 1o = ∪ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4315 ∪ cuni 4889 Oncon0 6365 Lim wlim 6366 suc csuc 6367 ωcom 7870 1oc1o 8482 2oc2o 8483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-om 7871 df-1o 8489 df-2o 8490 |
| This theorem is referenced by: finxpreclem4 37336 |
| Copyright terms: Public domain | W3C validator |