![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version |
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7770, see 1sdom2ALT 9304. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7770. (Revised by BTernaryTau, 8-Dec-2024.) |
Ref | Expression |
---|---|
1sdom2 | ⊢ 1o ≺ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8538 | . . . 4 ⊢ 2o ≠ ∅ | |
2 | 2oex 8533 | . . . . 5 ⊢ 2o ∈ V | |
3 | 2 | 0sdom 9173 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
4 | 1, 3 | mpbir 231 | . . 3 ⊢ ∅ ≺ 2o |
5 | 0sdom1dom 9301 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
6 | 4, 5 | mpbi 230 | . 2 ⊢ 1o ≼ 2o |
7 | snnen2o 9300 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
8 | df1o2 8529 | . . . 4 ⊢ 1o = {∅} | |
9 | 8 | breq1i 5173 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
10 | 7, 9 | mtbir 323 | . 2 ⊢ ¬ 1o ≈ 2o |
11 | brsdom 9035 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
12 | 6, 10, 11 | mpbir2an 710 | 1 ⊢ 1o ≺ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ≠ wne 2946 ∅c0 4352 {csn 4648 class class class wbr 5166 1oc1o 8515 2oc2o 8516 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-2o 8523 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: pm54.43 10070 pr2neOLD 10074 prdom2 10075 canthp1lem1 10721 canthp1 10723 1nprm 16726 |
Copyright terms: Public domain | W3C validator |