MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom2 Structured version   Visualization version   GIF version

Theorem 1sdom2 9164
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7691, see 1sdom2ALT 9165. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7691. (Revised by BTernaryTau, 8-Dec-2024.)
Assertion
Ref Expression
1sdom2 1o ≺ 2o

Proof of Theorem 1sdom2
StepHypRef Expression
1 2on0 8425 . . . 4 2o ≠ ∅
2 2oex 8422 . . . . 5 2o ∈ V
320sdom 9049 . . . 4 (∅ ≺ 2o ↔ 2o ≠ ∅)
41, 3mpbir 231 . . 3 ∅ ≺ 2o
5 0sdom1dom 9162 . . 3 (∅ ≺ 2o ↔ 1o ≼ 2o)
64, 5mpbi 230 . 2 1o ≼ 2o
7 snnen2o 9161 . . 3 ¬ {∅} ≈ 2o
8 df1o2 8418 . . . 4 1o = {∅}
98breq1i 5109 . . 3 (1o ≈ 2o ↔ {∅} ≈ 2o)
107, 9mtbir 323 . 2 ¬ 1o ≈ 2o
11 brsdom 8923 . 2 (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o))
126, 10, 11mpbir2an 711 1 1o ≺ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wne 2925  c0 4292  {csn 4585   class class class wbr 5102  1oc1o 8404  2oc2o 8405  cen 8892  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-2o 8412  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  pm54.43  9930  pr2neOLD  9934  prdom2  9935  canthp1lem1  10581  canthp1  10583  1nprm  16625
  Copyright terms: Public domain W3C validator