| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7663, see 1sdom2ALT 9128. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7663. (Revised by BTernaryTau, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1sdom2 | ⊢ 1o ≺ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 8394 | . . . 4 ⊢ 2o ≠ ∅ | |
| 2 | 2oex 8391 | . . . . 5 ⊢ 2o ∈ V | |
| 3 | 2 | 0sdom 9016 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ ∅ ≺ 2o |
| 5 | 0sdom1dom 9125 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ 1o ≼ 2o |
| 7 | snnen2o 9124 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
| 8 | df1o2 8387 | . . . 4 ⊢ 1o = {∅} | |
| 9 | 8 | breq1i 5093 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
| 10 | 7, 9 | mtbir 323 | . 2 ⊢ ¬ 1o ≈ 2o |
| 11 | brsdom 8892 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
| 12 | 6, 10, 11 | mpbir2an 711 | 1 ⊢ 1o ≺ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ≠ wne 2928 ∅c0 4278 {csn 4571 class class class wbr 5086 1oc1o 8373 2oc2o 8374 ≈ cen 8861 ≼ cdom 8862 ≺ csdm 8863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-1o 8380 df-2o 8381 df-en 8865 df-dom 8866 df-sdom 8867 |
| This theorem is referenced by: pm54.43 9889 prdom2 9892 canthp1lem1 10538 canthp1 10540 1nprm 16585 |
| Copyright terms: Public domain | W3C validator |