| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7714, see 1sdom2ALT 9195. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7714. (Revised by BTernaryTau, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1sdom2 | ⊢ 1o ≺ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 8451 | . . . 4 ⊢ 2o ≠ ∅ | |
| 2 | 2oex 8448 | . . . . 5 ⊢ 2o ∈ V | |
| 3 | 2 | 0sdom 9078 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ ∅ ≺ 2o |
| 5 | 0sdom1dom 9192 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ 1o ≼ 2o |
| 7 | snnen2o 9191 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
| 8 | df1o2 8444 | . . . 4 ⊢ 1o = {∅} | |
| 9 | 8 | breq1i 5117 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
| 10 | 7, 9 | mtbir 323 | . 2 ⊢ ¬ 1o ≈ 2o |
| 11 | brsdom 8949 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
| 12 | 6, 10, 11 | mpbir2an 711 | 1 ⊢ 1o ≺ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ≠ wne 2926 ∅c0 4299 {csn 4592 class class class wbr 5110 1oc1o 8430 2oc2o 8431 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1o 8437 df-2o 8438 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: pm54.43 9961 pr2neOLD 9965 prdom2 9966 canthp1lem1 10612 canthp1 10614 1nprm 16656 |
| Copyright terms: Public domain | W3C validator |