MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom2 Structured version   Visualization version   GIF version

Theorem 1sdom2 9303
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7770, see 1sdom2ALT 9304. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7770. (Revised by BTernaryTau, 8-Dec-2024.)
Assertion
Ref Expression
1sdom2 1o ≺ 2o

Proof of Theorem 1sdom2
StepHypRef Expression
1 2on0 8538 . . . 4 2o ≠ ∅
2 2oex 8533 . . . . 5 2o ∈ V
320sdom 9173 . . . 4 (∅ ≺ 2o ↔ 2o ≠ ∅)
41, 3mpbir 231 . . 3 ∅ ≺ 2o
5 0sdom1dom 9301 . . 3 (∅ ≺ 2o ↔ 1o ≼ 2o)
64, 5mpbi 230 . 2 1o ≼ 2o
7 snnen2o 9300 . . 3 ¬ {∅} ≈ 2o
8 df1o2 8529 . . . 4 1o = {∅}
98breq1i 5173 . . 3 (1o ≈ 2o ↔ {∅} ≈ 2o)
107, 9mtbir 323 . 2 ¬ 1o ≈ 2o
11 brsdom 9035 . 2 (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o))
126, 10, 11mpbir2an 710 1 1o ≺ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wne 2946  c0 4352  {csn 4648   class class class wbr 5166  1oc1o 8515  2oc2o 8516  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  pm54.43  10070  pr2neOLD  10074  prdom2  10075  canthp1lem1  10721  canthp1  10723  1nprm  16726
  Copyright terms: Public domain W3C validator