![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version |
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7754, see 1sdom2ALT 9275. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7754. (Revised by BTernaryTau, 8-Dec-2024.) |
Ref | Expression |
---|---|
1sdom2 | ⊢ 1o ≺ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8521 | . . . 4 ⊢ 2o ≠ ∅ | |
2 | 2oex 8516 | . . . . 5 ⊢ 2o ∈ V | |
3 | 2 | 0sdom 9146 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
4 | 1, 3 | mpbir 231 | . . 3 ⊢ ∅ ≺ 2o |
5 | 0sdom1dom 9272 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
6 | 4, 5 | mpbi 230 | . 2 ⊢ 1o ≼ 2o |
7 | snnen2o 9271 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
8 | df1o2 8512 | . . . 4 ⊢ 1o = {∅} | |
9 | 8 | breq1i 5155 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
10 | 7, 9 | mtbir 323 | . 2 ⊢ ¬ 1o ≈ 2o |
11 | brsdom 9014 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
12 | 6, 10, 11 | mpbir2an 711 | 1 ⊢ 1o ≺ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ≠ wne 2938 ∅c0 4339 {csn 4631 class class class wbr 5148 1oc1o 8498 2oc2o 8499 ≈ cen 8981 ≼ cdom 8982 ≺ csdm 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1o 8505 df-2o 8506 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: pm54.43 10039 pr2neOLD 10043 prdom2 10044 canthp1lem1 10690 canthp1 10692 1nprm 16713 |
Copyright terms: Public domain | W3C validator |