| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7729, see 1sdom2ALT 9249. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7729. (Revised by BTernaryTau, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1sdom2 | ⊢ 1o ≺ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 8496 | . . . 4 ⊢ 2o ≠ ∅ | |
| 2 | 2oex 8491 | . . . . 5 ⊢ 2o ∈ V | |
| 3 | 2 | 0sdom 9121 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ ∅ ≺ 2o |
| 5 | 0sdom1dom 9246 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ 1o ≼ 2o |
| 7 | snnen2o 9245 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
| 8 | df1o2 8487 | . . . 4 ⊢ 1o = {∅} | |
| 9 | 8 | breq1i 5126 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
| 10 | 7, 9 | mtbir 323 | . 2 ⊢ ¬ 1o ≈ 2o |
| 11 | brsdom 8989 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
| 12 | 6, 10, 11 | mpbir2an 711 | 1 ⊢ 1o ≺ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ≠ wne 2932 ∅c0 4308 {csn 4601 class class class wbr 5119 1oc1o 8473 2oc2o 8474 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1o 8480 df-2o 8481 df-en 8960 df-dom 8961 df-sdom 8962 |
| This theorem is referenced by: pm54.43 10015 pr2neOLD 10019 prdom2 10020 canthp1lem1 10666 canthp1 10668 1nprm 16698 |
| Copyright terms: Public domain | W3C validator |