![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version |
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7744, see 1sdom2ALT 9270. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7744. (Revised by BTernaryTau, 8-Dec-2024.) |
Ref | Expression |
---|---|
1sdom2 | ⊢ 1o ≺ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8507 | . . . 4 ⊢ 2o ≠ ∅ | |
2 | 2oex 8502 | . . . . 5 ⊢ 2o ∈ V | |
3 | 2 | 0sdom 9136 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ ∅ ≺ 2o |
5 | 0sdom1dom 9267 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
6 | 4, 5 | mpbi 229 | . 2 ⊢ 1o ≼ 2o |
7 | snnen2o 9266 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
8 | df1o2 8498 | . . . 4 ⊢ 1o = {∅} | |
9 | 8 | breq1i 5157 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
10 | 7, 9 | mtbir 322 | . 2 ⊢ ¬ 1o ≈ 2o |
11 | brsdom 9000 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
12 | 6, 10, 11 | mpbir2an 709 | 1 ⊢ 1o ≺ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ≠ wne 2936 ∅c0 4324 {csn 4630 class class class wbr 5150 1oc1o 8484 2oc2o 8485 ≈ cen 8965 ≼ cdom 8966 ≺ csdm 8967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-1o 8491 df-2o 8492 df-en 8969 df-dom 8970 df-sdom 8971 |
This theorem is referenced by: pm54.43 10030 pr2neOLD 10034 prdom2 10035 canthp1lem1 10681 canthp1 10683 1nprm 16655 |
Copyright terms: Public domain | W3C validator |