![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom2 | Structured version Visualization version GIF version |
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7721, see 1sdom2ALT 9237. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7721. (Revised by BTernaryTau, 8-Dec-2024.) |
Ref | Expression |
---|---|
1sdom2 | ⊢ 1o ≺ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8478 | . . . 4 ⊢ 2o ≠ ∅ | |
2 | 2oex 8473 | . . . . 5 ⊢ 2o ∈ V | |
3 | 2 | 0sdom 9103 | . . . 4 ⊢ (∅ ≺ 2o ↔ 2o ≠ ∅) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ ∅ ≺ 2o |
5 | 0sdom1dom 9234 | . . 3 ⊢ (∅ ≺ 2o ↔ 1o ≼ 2o) | |
6 | 4, 5 | mpbi 229 | . 2 ⊢ 1o ≼ 2o |
7 | snnen2o 9233 | . . 3 ⊢ ¬ {∅} ≈ 2o | |
8 | df1o2 8469 | . . . 4 ⊢ 1o = {∅} | |
9 | 8 | breq1i 5154 | . . 3 ⊢ (1o ≈ 2o ↔ {∅} ≈ 2o) |
10 | 7, 9 | mtbir 322 | . 2 ⊢ ¬ 1o ≈ 2o |
11 | brsdom 8967 | . 2 ⊢ (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o)) | |
12 | 6, 10, 11 | mpbir2an 709 | 1 ⊢ 1o ≺ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ≠ wne 2940 ∅c0 4321 {csn 4627 class class class wbr 5147 1oc1o 8455 2oc2o 8456 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-1o 8462 df-2o 8463 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: pm54.43 9992 pr2neOLD 9996 prdom2 9997 canthp1lem1 10643 canthp1 10645 1nprm 16612 |
Copyright terms: Public domain | W3C validator |