MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom2 Structured version   Visualization version   GIF version

Theorem 1sdom2 9194
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7714, see 1sdom2ALT 9195. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7714. (Revised by BTernaryTau, 8-Dec-2024.)
Assertion
Ref Expression
1sdom2 1o ≺ 2o

Proof of Theorem 1sdom2
StepHypRef Expression
1 2on0 8451 . . . 4 2o ≠ ∅
2 2oex 8448 . . . . 5 2o ∈ V
320sdom 9078 . . . 4 (∅ ≺ 2o ↔ 2o ≠ ∅)
41, 3mpbir 231 . . 3 ∅ ≺ 2o
5 0sdom1dom 9192 . . 3 (∅ ≺ 2o ↔ 1o ≼ 2o)
64, 5mpbi 230 . 2 1o ≼ 2o
7 snnen2o 9191 . . 3 ¬ {∅} ≈ 2o
8 df1o2 8444 . . . 4 1o = {∅}
98breq1i 5117 . . 3 (1o ≈ 2o ↔ {∅} ≈ 2o)
107, 9mtbir 323 . 2 ¬ 1o ≈ 2o
11 brsdom 8949 . 2 (1o ≺ 2o ↔ (1o ≼ 2o ∧ ¬ 1o ≈ 2o))
126, 10, 11mpbir2an 711 1 1o ≺ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wne 2926  c0 4299  {csn 4592   class class class wbr 5110  1oc1o 8430  2oc2o 8431  cen 8918  cdom 8919  csdm 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1o 8437  df-2o 8438  df-en 8922  df-dom 8923  df-sdom 8924
This theorem is referenced by:  pm54.43  9961  pr2neOLD  9965  prdom2  9966  canthp1lem1  10612  canthp1  10614  1nprm  16656
  Copyright terms: Public domain W3C validator