Proof of Theorem sltintdifex
Step | Hyp | Ref
| Expression |
1 | | sltval2 33859 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
2 | | fvex 6787 |
. . . 4
⊢ (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
3 | | fvex 6787 |
. . . 4
⊢ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
4 | 2, 3 | brtp 33717 |
. . 3
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ↔ (((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
5 | | fvprc 6766 |
. . . . . . 7
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
6 | | 1n0 8318 |
. . . . . . . . 9
⊢
1o ≠ ∅ |
7 | 6 | neii 2945 |
. . . . . . . 8
⊢ ¬
1o = ∅ |
8 | | eqeq1 2742 |
. . . . . . . . 9
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ↔ ∅ =
1o)) |
9 | | eqcom 2745 |
. . . . . . . . 9
⊢ (∅
= 1o ↔ 1o = ∅) |
10 | 8, 9 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ↔ 1o =
∅)) |
11 | 7, 10 | mtbiri 327 |
. . . . . . 7
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ¬ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o) |
12 | 5, 11 | syl 17 |
. . . . . 6
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → ¬ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o) |
13 | 12 | con4i 114 |
. . . . 5
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
14 | 13 | adantr 481 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
15 | 13 | adantr 481 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
16 | | fvprc 6766 |
. . . . . . 7
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
17 | | 2on0 8313 |
. . . . . . . . 9
⊢
2o ≠ ∅ |
18 | 17 | neii 2945 |
. . . . . . . 8
⊢ ¬
2o = ∅ |
19 | | eqeq1 2742 |
. . . . . . . . 9
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o ↔ ∅ =
2o)) |
20 | | eqcom 2745 |
. . . . . . . . 9
⊢ (∅
= 2o ↔ 2o = ∅) |
21 | 19, 20 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o ↔ 2o =
∅)) |
22 | 18, 21 | mtbiri 327 |
. . . . . . 7
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ¬ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) |
23 | 16, 22 | syl 17 |
. . . . . 6
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → ¬ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) |
24 | 23 | con4i 114 |
. . . . 5
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
25 | 24 | adantl 482 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
26 | 14, 15, 25 | 3jaoi 1426 |
. . 3
⊢ ((((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
27 | 4, 26 | sylbi 216 |
. 2
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
28 | 1, 27 | syl6bi 252 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V)) |