MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltintdifex Structured version   Visualization version   GIF version

Theorem sltintdifex 27600
Description: If 𝐴 <s 𝐵, then the intersection of all the ordinals that have differing signs in 𝐴 and 𝐵 exists. (Contributed by Scott Fenton, 22-Feb-2012.)
Assertion
Ref Expression
sltintdifex ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎

Proof of Theorem sltintdifex
StepHypRef Expression
1 sltval2 27595 . 2 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
2 fvex 6835 . . . 4 (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
3 fvex 6835 . . . 4 (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
42, 3brtp 5461 . . 3 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
5 fvprc 6814 . . . . . . 7 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅)
6 1n0 8403 . . . . . . . . 9 1o ≠ ∅
76neii 2930 . . . . . . . 8 ¬ 1o = ∅
8 eqeq1 2735 . . . . . . . . 9 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ↔ ∅ = 1o))
9 eqcom 2738 . . . . . . . . 9 (∅ = 1o ↔ 1o = ∅)
108, 9bitrdi 287 . . . . . . . 8 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ↔ 1o = ∅))
117, 10mtbiri 327 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ → ¬ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o)
125, 11syl 17 . . . . . 6 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V → ¬ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o)
1312con4i 114 . . . . 5 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
1413adantr 480 . . . 4 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
1513adantr 480 . . . 4 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
16 fvprc 6814 . . . . . . 7 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V → (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅)
17 2on0 8399 . . . . . . . . 9 2o ≠ ∅
1817neii 2930 . . . . . . . 8 ¬ 2o = ∅
19 eqeq1 2735 . . . . . . . . 9 ((𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ → ((𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o ↔ ∅ = 2o))
20 eqcom 2738 . . . . . . . . 9 (∅ = 2o ↔ 2o = ∅)
2119, 20bitrdi 287 . . . . . . . 8 ((𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ → ((𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o ↔ 2o = ∅))
2218, 21mtbiri 327 . . . . . . 7 ((𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ → ¬ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)
2316, 22syl 17 . . . . . 6 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V → ¬ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)
2423con4i 114 . . . . 5 ((𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
2524adantl 481 . . . 4 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
2614, 15, 253jaoi 1430 . . 3 ((((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
274, 26sylbi 217 . 2 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V)
281, 27biimtrdi 253 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  c0 4280  {ctp 4577  cop 4579   cint 4895   class class class wbr 5089  Oncon0 6306  cfv 6481  1oc1o 8378  2oc2o 8379   No csur 27578   <s cslt 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fv 6489  df-1o 8385  df-2o 8386  df-slt 27582
This theorem is referenced by:  sltres  27601
  Copyright terms: Public domain W3C validator