Proof of Theorem sltintdifex
| Step | Hyp | Ref
| Expression |
| 1 | | sltval2 27620 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
| 2 | | fvex 6889 |
. . . 4
⊢ (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
| 3 | | fvex 6889 |
. . . 4
⊢ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
| 4 | 2, 3 | brtp 5498 |
. . 3
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ↔ (((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
| 5 | | fvprc 6868 |
. . . . . . 7
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
| 6 | | 1n0 8500 |
. . . . . . . . 9
⊢
1o ≠ ∅ |
| 7 | 6 | neii 2934 |
. . . . . . . 8
⊢ ¬
1o = ∅ |
| 8 | | eqeq1 2739 |
. . . . . . . . 9
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ↔ ∅ =
1o)) |
| 9 | | eqcom 2742 |
. . . . . . . . 9
⊢ (∅
= 1o ↔ 1o = ∅) |
| 10 | 8, 9 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ↔ 1o =
∅)) |
| 11 | 7, 10 | mtbiri 327 |
. . . . . . 7
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ¬ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o) |
| 12 | 5, 11 | syl 17 |
. . . . . 6
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → ¬ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o) |
| 13 | 12 | con4i 114 |
. . . . 5
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 14 | 13 | adantr 480 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 15 | 13 | adantr 480 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 16 | | fvprc 6868 |
. . . . . . 7
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
| 17 | | 2on0 8496 |
. . . . . . . . 9
⊢
2o ≠ ∅ |
| 18 | 17 | neii 2934 |
. . . . . . . 8
⊢ ¬
2o = ∅ |
| 19 | | eqeq1 2739 |
. . . . . . . . 9
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o ↔ ∅ =
2o)) |
| 20 | | eqcom 2742 |
. . . . . . . . 9
⊢ (∅
= 2o ↔ 2o = ∅) |
| 21 | 19, 20 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o ↔ 2o =
∅)) |
| 22 | 18, 21 | mtbiri 327 |
. . . . . . 7
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ¬ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) |
| 23 | 16, 22 | syl 17 |
. . . . . 6
⊢ (¬
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V → ¬ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) |
| 24 | 23 | con4i 114 |
. . . . 5
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 25 | 24 | adantl 481 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 26 | 14, 15, 25 | 3jaoi 1430 |
. . 3
⊢ ((((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 27 | 4, 26 | sylbi 217 |
. 2
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V) |
| 28 | 1, 27 | biimtrdi 253 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V)) |