Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrfmvdn0 | Structured version Visualization version GIF version |
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrfmvdn0 | ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8388 | . 2 ⊢ 2o ≠ ∅ | |
2 | pmtrrn.t | . . . . . . . 8 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
3 | pmtrrn.r | . . . . . . . 8 ⊢ 𝑅 = ran 𝑇 | |
4 | eqid 2737 | . . . . . . . 8 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
5 | 2, 3, 4 | pmtrfrn 19163 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
6 | 5 | simpld 496 | . . . . . 6 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
7 | 6 | simp3d 1144 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈ 2o) |
8 | enen1 8987 | . . . . 5 ⊢ (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) |
10 | en0 8883 | . . . 4 ⊢ (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅) | |
11 | en0 8883 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
12 | 9, 10, 11 | 3bitr3g 313 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅)) |
13 | 12 | necon3bid 2986 | . 2 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅)) |
14 | 1, 13 | mpbiri 258 | 1 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 Vcvv 3442 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4274 class class class wbr 5097 I cid 5522 dom cdm 5625 ran crn 5626 ‘cfv 6484 2oc2o 8366 ≈ cen 8806 pmTrspcpmtr 19146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-om 7786 df-1o 8372 df-2o 8373 df-er 8574 df-en 8810 df-pmtr 19147 |
This theorem is referenced by: psgnunilem3 19201 |
Copyright terms: Public domain | W3C validator |