![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrfmvdn0 | Structured version Visualization version GIF version |
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrfmvdn0 | ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8499 | . 2 ⊢ 2o ≠ ∅ | |
2 | pmtrrn.t | . . . . . . . 8 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
3 | pmtrrn.r | . . . . . . . 8 ⊢ 𝑅 = ran 𝑇 | |
4 | eqid 2725 | . . . . . . . 8 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
5 | 2, 3, 4 | pmtrfrn 19415 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
6 | 5 | simpld 493 | . . . . . 6 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
7 | 6 | simp3d 1141 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈ 2o) |
8 | enen1 9138 | . . . . 5 ⊢ (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) |
10 | en0 9034 | . . . 4 ⊢ (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅) | |
11 | en0 9034 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
12 | 9, 10, 11 | 3bitr3g 312 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅)) |
13 | 12 | necon3bid 2975 | . 2 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅)) |
14 | 1, 13 | mpbiri 257 | 1 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ∖ cdif 3937 ⊆ wss 3940 ∅c0 4318 class class class wbr 5143 I cid 5569 dom cdm 5672 ran crn 5673 ‘cfv 6542 2oc2o 8477 ≈ cen 8957 pmTrspcpmtr 19398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7868 df-1o 8483 df-2o 8484 df-er 8721 df-en 8961 df-pmtr 19399 |
This theorem is referenced by: psgnunilem3 19453 |
Copyright terms: Public domain | W3C validator |