| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrfmvdn0 | Structured version Visualization version GIF version | ||
| Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
| Ref | Expression |
|---|---|
| pmtrfmvdn0 | ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 8504 | . 2 ⊢ 2o ≠ ∅ | |
| 2 | pmtrrn.t | . . . . . . . 8 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 3 | pmtrrn.r | . . . . . . . 8 ⊢ 𝑅 = ran 𝑇 | |
| 4 | eqid 2734 | . . . . . . . 8 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
| 5 | 2, 3, 4 | pmtrfrn 19444 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
| 6 | 5 | simpld 494 | . . . . . 6 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
| 7 | 6 | simp3d 1144 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈ 2o) |
| 8 | enen1 9139 | . . . . 5 ⊢ (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) |
| 10 | en0 9040 | . . . 4 ⊢ (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅) | |
| 11 | en0 9040 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
| 12 | 9, 10, 11 | 3bitr3g 313 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅)) |
| 13 | 12 | necon3bid 2975 | . 2 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅)) |
| 14 | 1, 13 | mpbiri 258 | 1 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 class class class wbr 5123 I cid 5557 dom cdm 5665 ran crn 5666 ‘cfv 6541 2oc2o 8482 ≈ cen 8964 pmTrspcpmtr 19427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-pmtr 19428 |
| This theorem is referenced by: psgnunilem3 19482 |
| Copyright terms: Public domain | W3C validator |