Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfmvdn0 Structured version   Visualization version   GIF version

Theorem pmtrfmvdn0 18592
 Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfmvdn0 (𝐹𝑅 → dom (𝐹 ∖ I ) ≠ ∅)

Proof of Theorem pmtrfmvdn0
StepHypRef Expression
1 2on0 8111 . 2 2o ≠ ∅
2 pmtrrn.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
3 pmtrrn.r . . . . . . . 8 𝑅 = ran 𝑇
4 eqid 2824 . . . . . . . 8 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
52, 3, 4pmtrfrn 18588 . . . . . . 7 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
65simpld 498 . . . . . 6 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
76simp3d 1141 . . . . 5 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
8 enen1 8656 . . . . 5 (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅))
97, 8syl 17 . . . 4 (𝐹𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅))
10 en0 8570 . . . 4 (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅)
11 en0 8570 . . . 4 (2o ≈ ∅ ↔ 2o = ∅)
129, 10, 113bitr3g 316 . . 3 (𝐹𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅))
1312necon3bid 3058 . 2 (𝐹𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅))
141, 13mpbiri 261 1 (𝐹𝑅 → dom (𝐹 ∖ I ) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  Vcvv 3480   ∖ cdif 3916   ⊆ wss 3919  ∅c0 4276   class class class wbr 5053   I cid 5447  dom cdm 5543  ran crn 5544  ‘cfv 6345  2oc2o 8094   ≈ cen 8504  pmTrspcpmtr 18571 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-om 7577  df-1o 8100  df-2o 8101  df-er 8287  df-en 8508  df-fin 8511  df-pmtr 18572 This theorem is referenced by:  psgnunilem3  18626
 Copyright terms: Public domain W3C validator