| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrfmvdn0 | Structured version Visualization version GIF version | ||
| Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
| Ref | Expression |
|---|---|
| pmtrfmvdn0 | ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 8425 | . 2 ⊢ 2o ≠ ∅ | |
| 2 | pmtrrn.t | . . . . . . . 8 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 3 | pmtrrn.r | . . . . . . . 8 ⊢ 𝑅 = ran 𝑇 | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
| 5 | 2, 3, 4 | pmtrfrn 19364 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
| 6 | 5 | simpld 494 | . . . . . 6 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
| 7 | 6 | simp3d 1144 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈ 2o) |
| 8 | enen1 9058 | . . . . 5 ⊢ (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) |
| 10 | en0 8966 | . . . 4 ⊢ (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅) | |
| 11 | en0 8966 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
| 12 | 9, 10, 11 | 3bitr3g 313 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅)) |
| 13 | 12 | necon3bid 2969 | . 2 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅)) |
| 14 | 1, 13 | mpbiri 258 | 1 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 I cid 5525 dom cdm 5631 ran crn 5632 ‘cfv 6499 2oc2o 8405 ≈ cen 8892 pmTrspcpmtr 19347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-pmtr 19348 |
| This theorem is referenced by: psgnunilem3 19402 |
| Copyright terms: Public domain | W3C validator |