![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrfmvdn0 | Structured version Visualization version GIF version |
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrfmvdn0 | ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 8478 | . 2 ⊢ 2o ≠ ∅ | |
2 | pmtrrn.t | . . . . . . . 8 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
3 | pmtrrn.r | . . . . . . . 8 ⊢ 𝑅 = ran 𝑇 | |
4 | eqid 2732 | . . . . . . . 8 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
5 | 2, 3, 4 | pmtrfrn 19320 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
6 | 5 | simpld 495 | . . . . . 6 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
7 | 6 | simp3d 1144 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈ 2o) |
8 | enen1 9113 | . . . . 5 ⊢ (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅)) |
10 | en0 9009 | . . . 4 ⊢ (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅) | |
11 | en0 9009 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
12 | 9, 10, 11 | 3bitr3g 312 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅)) |
13 | 12 | necon3bid 2985 | . 2 ⊢ (𝐹 ∈ 𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅)) |
14 | 1, 13 | mpbiri 257 | 1 ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 I cid 5572 dom cdm 5675 ran crn 5676 ‘cfv 6540 2oc2o 8456 ≈ cen 8932 pmTrspcpmtr 19303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-2o 8463 df-er 8699 df-en 8936 df-pmtr 19304 |
This theorem is referenced by: psgnunilem3 19358 |
Copyright terms: Public domain | W3C validator |