MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfmvdn0 Structured version   Visualization version   GIF version

Theorem pmtrfmvdn0 19398
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfmvdn0 (𝐹𝑅 → dom (𝐹 ∖ I ) ≠ ∅)

Proof of Theorem pmtrfmvdn0
StepHypRef Expression
1 2on0 8450 . 2 2o ≠ ∅
2 pmtrrn.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
3 pmtrrn.r . . . . . . . 8 𝑅 = ran 𝑇
4 eqid 2730 . . . . . . . 8 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
52, 3, 4pmtrfrn 19394 . . . . . . 7 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
65simpld 494 . . . . . 6 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
76simp3d 1144 . . . . 5 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
8 enen1 9086 . . . . 5 (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅))
97, 8syl 17 . . . 4 (𝐹𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅))
10 en0 8991 . . . 4 (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅)
11 en0 8991 . . . 4 (2o ≈ ∅ ↔ 2o = ∅)
129, 10, 113bitr3g 313 . . 3 (𝐹𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅))
1312necon3bid 2970 . 2 (𝐹𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅))
141, 13mpbiri 258 1 (𝐹𝑅 → dom (𝐹 ∖ I ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3913  wss 3916  c0 4298   class class class wbr 5109   I cid 5534  dom cdm 5640  ran crn 5641  cfv 6513  2oc2o 8430  cen 8917  pmTrspcpmtr 19377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-om 7845  df-1o 8436  df-2o 8437  df-er 8673  df-en 8921  df-pmtr 19378
This theorem is referenced by:  psgnunilem3  19432
  Copyright terms: Public domain W3C validator