MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfmvdn0 Structured version   Visualization version   GIF version

Theorem pmtrfmvdn0 19070
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfmvdn0 (𝐹𝑅 → dom (𝐹 ∖ I ) ≠ ∅)

Proof of Theorem pmtrfmvdn0
StepHypRef Expression
1 2on0 8313 . 2 2o ≠ ∅
2 pmtrrn.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
3 pmtrrn.r . . . . . . . 8 𝑅 = ran 𝑇
4 eqid 2738 . . . . . . . 8 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
52, 3, 4pmtrfrn 19066 . . . . . . 7 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
65simpld 495 . . . . . 6 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
76simp3d 1143 . . . . 5 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
8 enen1 8904 . . . . 5 (dom (𝐹 ∖ I ) ≈ 2o → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅))
97, 8syl 17 . . . 4 (𝐹𝑅 → (dom (𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅))
10 en0 8803 . . . 4 (dom (𝐹 ∖ I ) ≈ ∅ ↔ dom (𝐹 ∖ I ) = ∅)
11 en0 8803 . . . 4 (2o ≈ ∅ ↔ 2o = ∅)
129, 10, 113bitr3g 313 . . 3 (𝐹𝑅 → (dom (𝐹 ∖ I ) = ∅ ↔ 2o = ∅))
1312necon3bid 2988 . 2 (𝐹𝑅 → (dom (𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅))
141, 13mpbiri 257 1 (𝐹𝑅 → dom (𝐹 ∖ I ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  c0 4256   class class class wbr 5074   I cid 5488  dom cdm 5589  ran crn 5590  cfv 6433  2oc2o 8291  cen 8730  pmTrspcpmtr 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-pmtr 19050
This theorem is referenced by:  psgnunilem3  19104
  Copyright terms: Public domain W3C validator