Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomco Structured version   Visualization version   GIF version

Theorem rngohomco 37961
Description: The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngohomco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))

Proof of Theorem rngohomco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . 7 (1st𝑆) = (1st𝑆)
2 eqid 2735 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
3 eqid 2735 . . . . . . 7 (1st𝑇) = (1st𝑇)
4 eqid 2735 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
51, 2, 3, 4rngohomf 37953 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
653expa 1117 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
763adantl1 1165 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
87adantrl 716 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
9 eqid 2735 . . . . . . 7 (1st𝑅) = (1st𝑅)
10 eqid 2735 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
119, 10, 1, 2rngohomf 37953 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
12113expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
13123adantl3 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
1413adantrr 717 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
15 fco 6761 . . 3 ((𝐺:ran (1st𝑆)⟶ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)⟶ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
168, 14, 15syl2anc 584 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
17 eqid 2735 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
18 eqid 2735 . . . . . . 7 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
1910, 17, 18rngo1cl 37926 . . . . . 6 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
20193ad2ant1 1132 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
2120adantr 480 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
22 fvco3 7008 . . . 4 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (GId‘(2nd𝑅)) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
2314, 21, 22syl2anc 584 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
24 eqid 2735 . . . . . . . . 9 (2nd𝑆) = (2nd𝑆)
25 eqid 2735 . . . . . . . . 9 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
2617, 18, 24, 25rngohom1 37955 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
27263expa 1117 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
28273adantl3 1167 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
2928adantrr 717 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
3029fveq2d 6911 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (𝐺‘(GId‘(2nd𝑆))))
31 eqid 2735 . . . . . . . 8 (2nd𝑇) = (2nd𝑇)
32 eqid 2735 . . . . . . . 8 (GId‘(2nd𝑇)) = (GId‘(2nd𝑇))
3324, 25, 31, 32rngohom1 37955 . . . . . . 7 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
34333expa 1117 . . . . . 6 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
35343adantl1 1165 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3635adantrl 716 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3730, 36eqtrd 2775 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (GId‘(2nd𝑇)))
3823, 37eqtrd 2775 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)))
399, 10, 1rngohomadd 37956 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4039ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
41403expa 1117 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
42413adantl3 1167 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
4342imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4443adantlrr 721 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4544fveq2d 6911 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
469, 10, 1, 2rngohomcl 37954 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝐹𝑥) ∈ ran (1st𝑆))
479, 10, 1, 2rngohomcl 37954 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹𝑦) ∈ ran (1st𝑆))
4846, 47anim12dan 619 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
4948ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
50493expa 1117 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
51503adantl3 1167 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
5251imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
5352adantlrr 721 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
541, 2, 3rngohomadd 37956 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5554ex 412 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
56553expa 1117 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
57563adantl1 1165 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
5857imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5958adantlrl 720 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6053, 59syldan 591 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6145, 60eqtrd 2775 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
629, 10rngogcl 37899 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
63623expb 1119 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
64633ad2antl1 1184 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
6564adantlr 715 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
66 fvco3 7008 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6714, 66sylan 580 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6865, 67syldan 591 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
69 fvco3 7008 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
7014, 69sylan 580 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
71 fvco3 7008 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7214, 71sylan 580 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7370, 72anim12dan 619 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))))
74 oveq12 7440 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7573, 74syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7661, 68, 753eqtr4d 2785 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)))
779, 10, 17, 24rngohommul 37957 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
7877ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
79783expa 1117 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
80793adantl3 1167 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
8180imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8281adantlrr 721 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8382fveq2d 6911 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
841, 2, 24, 31rngohommul 37957 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8584ex 412 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
86853expa 1117 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
87863adantl1 1165 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
8887imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8988adantlrl 720 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9053, 89syldan 591 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9183, 90eqtrd 2775 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
929, 17, 10rngocl 37888 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
93923expb 1119 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
94933ad2antl1 1184 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
9594adantlr 715 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
96 fvco3 7008 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9714, 96sylan 580 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9895, 97syldan 591 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
99 oveq12 7440 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10073, 99syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10191, 98, 1003eqtr4d 2785 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)))
10276, 101jca 511 . . 3 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
103102ralrimivva 3200 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
1049, 17, 10, 18, 3, 31, 4, 32isrngohom 37952 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
1051043adant2 1130 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
106105adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
10716, 38, 103, 106mpbir3and 1341 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ran crn 5690  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  GIdcgi 30519  RingOpscrngo 37881   RingOpsHom crngohom 37947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-grpo 30522  df-gid 30523  df-ablo 30574  df-ass 37830  df-exid 37832  df-mgmOLD 37836  df-sgrOLD 37848  df-mndo 37854  df-rngo 37882  df-rngohom 37950
This theorem is referenced by:  rngoisoco  37969
  Copyright terms: Public domain W3C validator