Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomco Structured version   Visualization version   GIF version

Theorem rngohomco 36059
Description: The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngohomco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))

Proof of Theorem rngohomco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (1st𝑆) = (1st𝑆)
2 eqid 2738 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
3 eqid 2738 . . . . . . 7 (1st𝑇) = (1st𝑇)
4 eqid 2738 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
51, 2, 3, 4rngohomf 36051 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
653expa 1116 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
763adantl1 1164 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
87adantrl 712 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
9 eqid 2738 . . . . . . 7 (1st𝑅) = (1st𝑅)
10 eqid 2738 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
119, 10, 1, 2rngohomf 36051 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
12113expa 1116 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
13123adantl3 1166 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
1413adantrr 713 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
15 fco 6608 . . 3 ((𝐺:ran (1st𝑆)⟶ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)⟶ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
168, 14, 15syl2anc 583 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
17 eqid 2738 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
18 eqid 2738 . . . . . . 7 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
1910, 17, 18rngo1cl 36024 . . . . . 6 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
20193ad2ant1 1131 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
2120adantr 480 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
22 fvco3 6849 . . . 4 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (GId‘(2nd𝑅)) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
2314, 21, 22syl2anc 583 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
24 eqid 2738 . . . . . . . . 9 (2nd𝑆) = (2nd𝑆)
25 eqid 2738 . . . . . . . . 9 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
2617, 18, 24, 25rngohom1 36053 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
27263expa 1116 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
28273adantl3 1166 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
2928adantrr 713 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
3029fveq2d 6760 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (𝐺‘(GId‘(2nd𝑆))))
31 eqid 2738 . . . . . . . 8 (2nd𝑇) = (2nd𝑇)
32 eqid 2738 . . . . . . . 8 (GId‘(2nd𝑇)) = (GId‘(2nd𝑇))
3324, 25, 31, 32rngohom1 36053 . . . . . . 7 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
34333expa 1116 . . . . . 6 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
35343adantl1 1164 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3635adantrl 712 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3730, 36eqtrd 2778 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (GId‘(2nd𝑇)))
3823, 37eqtrd 2778 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)))
399, 10, 1rngohomadd 36054 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4039ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
41403expa 1116 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
42413adantl3 1166 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
4342imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4443adantlrr 717 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4544fveq2d 6760 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
469, 10, 1, 2rngohomcl 36052 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝐹𝑥) ∈ ran (1st𝑆))
479, 10, 1, 2rngohomcl 36052 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹𝑦) ∈ ran (1st𝑆))
4846, 47anim12dan 618 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
4948ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
50493expa 1116 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
51503adantl3 1166 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
5251imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
5352adantlrr 717 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
541, 2, 3rngohomadd 36054 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5554ex 412 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
56553expa 1116 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
57563adantl1 1164 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
5857imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5958adantlrl 716 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6053, 59syldan 590 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6145, 60eqtrd 2778 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
629, 10rngogcl 35997 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
63623expb 1118 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
64633ad2antl1 1183 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
6564adantlr 711 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
66 fvco3 6849 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6714, 66sylan 579 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6865, 67syldan 590 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
69 fvco3 6849 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
7014, 69sylan 579 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
71 fvco3 6849 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7214, 71sylan 579 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7370, 72anim12dan 618 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))))
74 oveq12 7264 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7573, 74syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7661, 68, 753eqtr4d 2788 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)))
779, 10, 17, 24rngohommul 36055 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
7877ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
79783expa 1116 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
80793adantl3 1166 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
8180imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8281adantlrr 717 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8382fveq2d 6760 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
841, 2, 24, 31rngohommul 36055 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8584ex 412 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
86853expa 1116 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
87863adantl1 1164 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
8887imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8988adantlrl 716 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9053, 89syldan 590 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9183, 90eqtrd 2778 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
929, 17, 10rngocl 35986 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
93923expb 1118 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
94933ad2antl1 1183 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
9594adantlr 711 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
96 fvco3 6849 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9714, 96sylan 579 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9895, 97syldan 590 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
99 oveq12 7264 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10073, 99syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10191, 98, 1003eqtr4d 2788 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)))
10276, 101jca 511 . . 3 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
103102ralrimivva 3114 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
1049, 17, 10, 18, 3, 31, 4, 32isrngohom 36050 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
1051043adant2 1129 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
106105adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
10716, 38, 103, 106mpbir3and 1340 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ran crn 5581  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  GIdcgi 28753  RingOpscrngo 35979   RngHom crnghom 36045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-grpo 28756  df-gid 28757  df-ablo 28808  df-ass 35928  df-exid 35930  df-mgmOLD 35934  df-sgrOLD 35946  df-mndo 35952  df-rngo 35980  df-rngohom 36048
This theorem is referenced by:  rngoisoco  36067
  Copyright terms: Public domain W3C validator