Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomco Structured version   Visualization version   GIF version

Theorem rngohomco 38003
Description: The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngohomco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))

Proof of Theorem rngohomco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (1st𝑆) = (1st𝑆)
2 eqid 2736 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
3 eqid 2736 . . . . . . 7 (1st𝑇) = (1st𝑇)
4 eqid 2736 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
51, 2, 3, 4rngohomf 37995 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
653expa 1118 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
763adantl1 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
87adantrl 716 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
9 eqid 2736 . . . . . . 7 (1st𝑅) = (1st𝑅)
10 eqid 2736 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
119, 10, 1, 2rngohomf 37995 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
12113expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
13123adantl3 1169 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
1413adantrr 717 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
15 fco 6735 . . 3 ((𝐺:ran (1st𝑆)⟶ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)⟶ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
168, 14, 15syl2anc 584 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
17 eqid 2736 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
18 eqid 2736 . . . . . . 7 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
1910, 17, 18rngo1cl 37968 . . . . . 6 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
20193ad2ant1 1133 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
2120adantr 480 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
22 fvco3 6983 . . . 4 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (GId‘(2nd𝑅)) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
2314, 21, 22syl2anc 584 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
24 eqid 2736 . . . . . . . . 9 (2nd𝑆) = (2nd𝑆)
25 eqid 2736 . . . . . . . . 9 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
2617, 18, 24, 25rngohom1 37997 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
27263expa 1118 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
28273adantl3 1169 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
2928adantrr 717 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
3029fveq2d 6885 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (𝐺‘(GId‘(2nd𝑆))))
31 eqid 2736 . . . . . . . 8 (2nd𝑇) = (2nd𝑇)
32 eqid 2736 . . . . . . . 8 (GId‘(2nd𝑇)) = (GId‘(2nd𝑇))
3324, 25, 31, 32rngohom1 37997 . . . . . . 7 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
34333expa 1118 . . . . . 6 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
35343adantl1 1167 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3635adantrl 716 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3730, 36eqtrd 2771 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (GId‘(2nd𝑇)))
3823, 37eqtrd 2771 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)))
399, 10, 1rngohomadd 37998 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4039ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
41403expa 1118 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
42413adantl3 1169 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
4342imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4443adantlrr 721 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4544fveq2d 6885 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
469, 10, 1, 2rngohomcl 37996 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝐹𝑥) ∈ ran (1st𝑆))
479, 10, 1, 2rngohomcl 37996 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹𝑦) ∈ ran (1st𝑆))
4846, 47anim12dan 619 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
4948ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
50493expa 1118 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
51503adantl3 1169 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
5251imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
5352adantlrr 721 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
541, 2, 3rngohomadd 37998 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5554ex 412 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
56553expa 1118 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
57563adantl1 1167 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
5857imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5958adantlrl 720 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6053, 59syldan 591 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6145, 60eqtrd 2771 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
629, 10rngogcl 37941 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
63623expb 1120 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
64633ad2antl1 1186 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
6564adantlr 715 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
66 fvco3 6983 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6714, 66sylan 580 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6865, 67syldan 591 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
69 fvco3 6983 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
7014, 69sylan 580 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
71 fvco3 6983 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7214, 71sylan 580 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7370, 72anim12dan 619 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))))
74 oveq12 7419 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7573, 74syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7661, 68, 753eqtr4d 2781 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)))
779, 10, 17, 24rngohommul 37999 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
7877ex 412 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
79783expa 1118 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
80793adantl3 1169 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
8180imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8281adantlrr 721 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8382fveq2d 6885 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
841, 2, 24, 31rngohommul 37999 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8584ex 412 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
86853expa 1118 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
87863adantl1 1167 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
8887imp 406 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8988adantlrl 720 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9053, 89syldan 591 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9183, 90eqtrd 2771 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
929, 17, 10rngocl 37930 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
93923expb 1120 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
94933ad2antl1 1186 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
9594adantlr 715 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
96 fvco3 6983 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9714, 96sylan 580 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9895, 97syldan 591 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
99 oveq12 7419 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10073, 99syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10191, 98, 1003eqtr4d 2781 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)))
10276, 101jca 511 . . 3 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
103102ralrimivva 3188 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
1049, 17, 10, 18, 3, 31, 4, 32isrngohom 37994 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
1051043adant2 1131 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
106105adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
10716, 38, 103, 106mpbir3and 1343 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  ran crn 5660  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  GIdcgi 30476  RingOpscrngo 37923   RingOpsHom crngohom 37989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-grpo 30479  df-gid 30480  df-ablo 30531  df-ass 37872  df-exid 37874  df-mgmOLD 37878  df-sgrOLD 37890  df-mndo 37896  df-rngo 37924  df-rngohom 37992
This theorem is referenced by:  rngoisoco  38011
  Copyright terms: Public domain W3C validator