Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expnlbnd | Structured version Visualization version GIF version |
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
expnlbnd | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12784 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpne0 12792 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 1, 2 | rereccld 11848 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
4 | expnbnd 13993 | . . 3 ⊢ (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) | |
5 | 3, 4 | syl3an1 1163 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) |
6 | rpregt0 12790 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
8 | nnnn0 12286 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
9 | reexpcl 13845 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑𝑘) ∈ ℝ) | |
10 | 8, 9 | sylan2 594 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
11 | 10 | adantlr 713 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
12 | simpll 765 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) | |
13 | nnz 12388 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
14 | 13 | adantl 483 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
15 | 0lt1 11543 | . . . . . . . . . 10 ⊢ 0 < 1 | |
16 | 0re 11023 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
17 | 1re 11021 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
18 | lttr 11097 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
19 | 16, 17, 18 | mp3an12 1451 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
20 | 15, 19 | mpani 694 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
21 | 20 | imp 408 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
22 | 21 | adantr 482 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵) |
23 | expgt0 13862 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑘)) | |
24 | 12, 14, 22, 23 | syl3anc 1371 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵↑𝑘)) |
25 | 11, 24 | jca 513 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
26 | 25 | 3adantl1 1166 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
27 | ltrec1 11908 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) | |
28 | 7, 26, 27 | syl2an2r 683 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) |
29 | 28 | rexbidva 3170 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴)) |
30 | 5, 29 | mpbid 231 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 ∃wrex 3071 class class class wbr 5081 (class class class)co 7307 ℝcr 10916 0cc0 10917 1c1 10918 < clt 11055 / cdiv 11678 ℕcn 12019 ℕ0cn0 12279 ℤcz 12365 ℝ+crp 12776 ↑cexp 13828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fl 13558 df-seq 13768 df-exp 13829 |
This theorem is referenced by: expnlbnd2 13995 opnmbllem 24810 opnmbllem0 35857 heiborlem7 36019 |
Copyright terms: Public domain | W3C validator |