MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnlbnd Structured version   Visualization version   GIF version

Theorem expnlbnd 13597
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 12400 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpne0 12408 . . . 4 (𝐴 ∈ ℝ+𝐴 ≠ 0)
31, 2rereccld 11469 . . 3 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
4 expnbnd 13596 . . 3 (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
53, 4syl3an1 1159 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
6 rpregt0 12406 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
763ad2ant1 1129 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
8 nnnn0 11907 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
9 reexpcl 13449 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
108, 9sylan2 594 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
1110adantlr 713 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
12 simpll 765 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
13 nnz 12007 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1413adantl 484 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
15 0lt1 11164 . . . . . . . . . 10 0 < 1
16 0re 10645 . . . . . . . . . . 11 0 ∈ ℝ
17 1re 10643 . . . . . . . . . . 11 1 ∈ ℝ
18 lttr 10719 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
1916, 17, 18mp3an12 1447 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
2015, 19mpani 694 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
2120imp 409 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
2221adantr 483 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
23 expgt0 13465 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑘))
2412, 14, 22, 23syl3anc 1367 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵𝑘))
2511, 24jca 514 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
26253adantl1 1162 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
27 ltrec1 11529 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘))) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
287, 26, 27syl2an2r 683 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
2928rexbidva 3298 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴))
305, 29mpbid 234 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wrex 3141   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   < clt 10677   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  +crp 12392  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433
This theorem is referenced by:  expnlbnd2  13598  opnmbllem  24204  opnmbllem0  34930  heiborlem7  35097
  Copyright terms: Public domain W3C validator