MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnlbnd Structured version   Visualization version   GIF version

Theorem expnlbnd 14201
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 12988 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpne0 12996 . . . 4 (𝐴 ∈ ℝ+𝐴 ≠ 0)
31, 2rereccld 12045 . . 3 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
4 expnbnd 14200 . . 3 (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
53, 4syl3an1 1160 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
6 rpregt0 12994 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
763ad2ant1 1130 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
8 nnnn0 12483 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
9 reexpcl 14049 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
108, 9sylan2 592 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
1110adantlr 712 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
12 simpll 764 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
13 nnz 12583 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1413adantl 481 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
15 0lt1 11740 . . . . . . . . . 10 0 < 1
16 0re 11220 . . . . . . . . . . 11 0 ∈ ℝ
17 1re 11218 . . . . . . . . . . 11 1 ∈ ℝ
18 lttr 11294 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
1916, 17, 18mp3an12 1447 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
2015, 19mpani 693 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
2120imp 406 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
2221adantr 480 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
23 expgt0 14066 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑘))
2412, 14, 22, 23syl3anc 1368 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵𝑘))
2511, 24jca 511 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
26253adantl1 1163 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
27 ltrec1 12105 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘))) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
287, 26, 27syl2an2r 682 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
2928rexbidva 3170 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴))
305, 29mpbid 231 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098  wrex 3064   class class class wbr 5141  (class class class)co 7405  cr 11111  0cc0 11112  1c1 11113   < clt 11252   / cdiv 11875  cn 12216  0cn0 12476  cz 12562  +crp 12980  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fl 13763  df-seq 13973  df-exp 14033
This theorem is referenced by:  expnlbnd2  14202  opnmbllem  25485  opnmbllem0  37037  heiborlem7  37198
  Copyright terms: Public domain W3C validator