MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eqpr Structured version   Visualization version   GIF version

Theorem en2eqpr 9998
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
StepHypRef Expression
1 2onn 8637 . . . . . 6 2o ∈ ω
2 nnfi 9163 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . 5 2o ∈ Fin
4 simpl1 1191 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ≈ 2o)
5 enfii 9185 . . . . 5 ((2o ∈ Fin ∧ 𝐶 ≈ 2o) → 𝐶 ∈ Fin)
63, 4, 5sylancr 587 . . . 4 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ∈ Fin)
7 simpl2 1192 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐴𝐶)
8 simpl3 1193 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐵𝐶)
97, 8prssd 4824 . . . 4 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ 𝐶)
10 enpr2 9993 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
11103expa 1118 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
12113adantl1 1166 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
134ensymd 8997 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 2o𝐶)
14 entr 8998 . . . . 5 (({𝐴, 𝐵} ≈ 2o ∧ 2o𝐶) → {𝐴, 𝐵} ≈ 𝐶)
1512, 13, 14syl2anc 584 . . . 4 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 𝐶)
16 fisseneq 9253 . . . 4 ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶)
176, 9, 15, 16syl3anc 1371 . . 3 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} = 𝐶)
1817eqcomd 2738 . 2 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
1918ex 413 1 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wss 3947  {cpr 4629   class class class wbr 5147  ωcom 7851  2oc2o 8456  cen 8932  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939
This theorem is referenced by:  isprm2lem  16614  en2top  22479
  Copyright terms: Public domain W3C validator