Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eqpr Structured version   Visualization version   GIF version

Theorem en2eqpr 9411
 Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
StepHypRef Expression
1 2onn 8244 . . . . . 6 2o ∈ ω
2 nnfi 8689 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . 5 2o ∈ Fin
4 simpl1 1187 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ≈ 2o)
5 enfii 8713 . . . . 5 ((2o ∈ Fin ∧ 𝐶 ≈ 2o) → 𝐶 ∈ Fin)
63, 4, 5sylancr 589 . . . 4 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ∈ Fin)
7 simpl2 1188 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐴𝐶)
8 simpl3 1189 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐵𝐶)
97, 8prssd 4731 . . . 4 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ 𝐶)
10 pr2nelem 9408 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
11103expa 1114 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
12113adantl1 1162 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
134ensymd 8538 . . . . 5 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 2o𝐶)
14 entr 8539 . . . . 5 (({𝐴, 𝐵} ≈ 2o ∧ 2o𝐶) → {𝐴, 𝐵} ≈ 𝐶)
1512, 13, 14syl2anc 586 . . . 4 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 𝐶)
16 fisseneq 8707 . . . 4 ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶)
176, 9, 15, 16syl3anc 1367 . . 3 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} = 𝐶)
1817eqcomd 2826 . 2 (((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
1918ex 415 1 ((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006   ⊆ wss 3913  {cpr 4545   class class class wbr 5042  ωcom 7558  2oc2o 8074   ≈ cen 8484  Fincfn 8487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-om 7559  df-1o 8080  df-2o 8081  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491 This theorem is referenced by:  isprm2lem  16003  en2top  21569
 Copyright terms: Public domain W3C validator