| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2eqpr | Structured version Visualization version GIF version | ||
| Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| en2eqpr | ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 8654 | . . . . . 6 ⊢ 2o ∈ ω | |
| 2 | nnfi 9181 | . . . . . 6 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2o ∈ Fin |
| 4 | simpl1 1192 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ≈ 2o) | |
| 5 | enfii 9200 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝐶 ≈ 2o) → 𝐶 ∈ Fin) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ Fin) |
| 7 | simpl2 1193 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐶) | |
| 8 | simpl3 1194 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | prssd 4798 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ 𝐶) |
| 10 | enpr2 10016 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
| 11 | 10 | 3expa 1118 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | 11 | 3adantl1 1167 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 13 | 4 | ensymd 9019 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 2o ≈ 𝐶) |
| 14 | entr 9020 | . . . . 5 ⊢ (({𝐴, 𝐵} ≈ 2o ∧ 2o ≈ 𝐶) → {𝐴, 𝐵} ≈ 𝐶) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 𝐶) |
| 16 | fisseneq 9265 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶) | |
| 17 | 6, 9, 15, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶) |
| 18 | 17 | eqcomd 2741 | . 2 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 = {𝐴, 𝐵}) |
| 19 | 18 | ex 412 | 1 ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 {cpr 4603 class class class wbr 5119 ωcom 7861 2oc2o 8474 ≈ cen 8956 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 |
| This theorem is referenced by: isprm2lem 16700 en2top 22923 |
| Copyright terms: Public domain | W3C validator |