![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2eqpr | Structured version Visualization version GIF version |
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
en2eqpr | ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8640 | . . . . . 6 ⊢ 2o ∈ ω | |
2 | nnfi 9166 | . . . . . 6 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2o ∈ Fin |
4 | simpl1 1188 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ≈ 2o) | |
5 | enfii 9188 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝐶 ≈ 2o) → 𝐶 ∈ Fin) | |
6 | 3, 4, 5 | sylancr 586 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ Fin) |
7 | simpl2 1189 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐶) | |
8 | simpl3 1190 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐶) | |
9 | 7, 8 | prssd 4820 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ 𝐶) |
10 | enpr2 9996 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
11 | 10 | 3expa 1115 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
12 | 11 | 3adantl1 1163 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
13 | 4 | ensymd 9000 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 2o ≈ 𝐶) |
14 | entr 9001 | . . . . 5 ⊢ (({𝐴, 𝐵} ≈ 2o ∧ 2o ≈ 𝐶) → {𝐴, 𝐵} ≈ 𝐶) | |
15 | 12, 13, 14 | syl2anc 583 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 𝐶) |
16 | fisseneq 9256 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶) | |
17 | 6, 9, 15, 16 | syl3anc 1368 | . . 3 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶) |
18 | 17 | eqcomd 2732 | . 2 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 = {𝐴, 𝐵}) |
19 | 18 | ex 412 | 1 ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ⊆ wss 3943 {cpr 4625 class class class wbr 5141 ωcom 7851 2oc2o 8458 ≈ cen 8935 Fincfn 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7852 df-1o 8464 df-2o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 |
This theorem is referenced by: isprm2lem 16622 en2top 22838 |
Copyright terms: Public domain | W3C validator |