| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2eqpr | Structured version Visualization version GIF version | ||
| Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| en2eqpr | ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 8606 | . . . . . 6 ⊢ 2o ∈ ω | |
| 2 | nnfi 9131 | . . . . . 6 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2o ∈ Fin |
| 4 | simpl1 1192 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ≈ 2o) | |
| 5 | enfii 9150 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝐶 ≈ 2o) → 𝐶 ∈ Fin) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ Fin) |
| 7 | simpl2 1193 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐶) | |
| 8 | simpl3 1194 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | prssd 4786 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ 𝐶) |
| 10 | enpr2 9955 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
| 11 | 10 | 3expa 1118 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | 11 | 3adantl1 1167 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 13 | 4 | ensymd 8976 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 2o ≈ 𝐶) |
| 14 | entr 8977 | . . . . 5 ⊢ (({𝐴, 𝐵} ≈ 2o ∧ 2o ≈ 𝐶) → {𝐴, 𝐵} ≈ 𝐶) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 𝐶) |
| 16 | fisseneq 9204 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶) | |
| 17 | 6, 9, 15, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶) |
| 18 | 17 | eqcomd 2735 | . 2 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 = {𝐴, 𝐵}) |
| 19 | 18 | ex 412 | 1 ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 {cpr 4591 class class class wbr 5107 ωcom 7842 2oc2o 8428 ≈ cen 8915 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: isprm2lem 16651 en2top 22872 |
| Copyright terms: Public domain | W3C validator |