| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2eqpr | Structured version Visualization version GIF version | ||
| Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| en2eqpr | ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 8552 | . . . . . 6 ⊢ 2o ∈ ω | |
| 2 | nnfi 9072 | . . . . . 6 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2o ∈ Fin |
| 4 | simpl1 1192 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ≈ 2o) | |
| 5 | enfii 9090 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝐶 ≈ 2o) → 𝐶 ∈ Fin) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ Fin) |
| 7 | simpl2 1193 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐶) | |
| 8 | simpl3 1194 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | prssd 4769 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ 𝐶) |
| 10 | enpr2 9890 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | |
| 11 | 10 | 3expa 1118 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 12 | 11 | 3adantl1 1167 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 13 | 4 | ensymd 8922 | . . . . 5 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 2o ≈ 𝐶) |
| 14 | entr 8923 | . . . . 5 ⊢ (({𝐴, 𝐵} ≈ 2o ∧ 2o ≈ 𝐶) → {𝐴, 𝐵} ≈ 𝐶) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 𝐶) |
| 16 | fisseneq 9142 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶) | |
| 17 | 6, 9, 15, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶) |
| 18 | 17 | eqcomd 2737 | . 2 ⊢ (((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 = {𝐴, 𝐵}) |
| 19 | 18 | ex 412 | 1 ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 {cpr 4573 class class class wbr 5086 ωcom 7791 2oc2o 8374 ≈ cen 8861 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-om 7792 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 |
| This theorem is referenced by: isprm2lem 16587 en2top 22895 |
| Copyright terms: Public domain | W3C validator |