Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantlr 711 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1164 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: simpl2 1190 simpl2l 1224 simpl2r 1225 simpl21 1249 simpl22 1250 simpl23 1251 fcofo 7140 cocan1 7143 ordiso2 9204 fin1a2lem9 10095 fin1a2lem12 10098 gchpwdom 10357 winainflem 10380 bpolydif 15693 dvdsmodexp 15899 muldvds1 15918 lcmdvds 16241 ramcl 16658 gsumccatOLD 18394 oddvdsnn0 19067 ghmplusg 19362 frlmsslss2 20892 frlmsslsp 20913 islindf4 20955 mamures 21449 matepmcl 21519 matepm2cl 21520 pmatcollpw2lem 21834 cnpnei 22323 ssref 22571 qtopss 22774 elfm2 23007 flffbas 23054 cnpfcf 23100 deg1ldg 25162 brbtwn2 27176 colinearalg 27181 axsegconlem1 27188 upgrpredgv 27412 cusgrrusgr 27851 upgrewlkle2 27876 wwlksm1edg 28147 clwwlkf 28312 wwlksext2clwwlk 28322 nvmul0or 28913 hoadddi 30066 volfiniune 32098 bnj548 32777 funsseq 33648 nn0prpwlem 34438 fnemeet1 34482 curfv 35684 lindsadd 35697 keridl 36117 pmapglbx 37710 elpaddn0 37741 paddasslem9 37769 paddasslem10 37770 cdleme42mgN 38429 factwoffsmonot 40091 relexpxpmin 41214 ntrclsk3 41569 n0p 42480 wessf1ornlem 42611 infxr 42796 lptre2pt 43071 dvnprodlem1 43377 fourierdlem42 43580 fourierdlem48 43585 fourierdlem54 43591 fourierdlem77 43614 sge0rpcpnf 43849 hoicvr 43976 smflimsuplem7 44246 isomgrsym 45176 |
Copyright terms: Public domain | W3C validator |