| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl2 1193 simpl2l 1227 simpl2r 1228 simpl21 1252 simpl22 1253 simpl23 1254 fcofo 7263 cocan1 7266 ordiso2 9468 fin1a2lem9 10361 fin1a2lem12 10364 gchpwdom 10623 winainflem 10646 bpolydif 16021 dvdsmodexp 16230 muldvds1 16250 lcmdvds 16578 ramcl 17000 oddvdsnn0 19474 ghmplusg 19776 frlmsslss2 21684 frlmsslsp 21705 islindf4 21747 mamures 22284 matepmcl 22349 matepm2cl 22350 pmatcollpw2lem 22664 cnpnei 23151 ssref 23399 qtopss 23602 elfm2 23835 flffbas 23882 cnpfcf 23928 deg1ldg 25997 brbtwn2 28832 colinearalg 28837 axsegconlem1 28844 upgrpredgv 29066 cusgrrusgr 29509 upgrewlkle2 29534 wwlksm1edg 29811 clwwlkf 29976 wwlksext2clwwlk 29986 nvmul0or 30579 hoadddi 31732 volfiniune 34220 bnj548 34887 funsseq 35755 nn0prpwlem 36310 fnemeet1 36354 curfv 37594 lindsadd 37607 keridl 38026 pmapglbx 39763 elpaddn0 39794 paddasslem9 39822 paddasslem10 39823 cdleme42mgN 40482 relexpxpmin 43706 ntrclsk3 44059 n0p 45039 wessf1ornlem 45179 infxr 45363 lptre2pt 45638 dvnprodlem1 45944 fourierdlem42 46147 fourierdlem48 46152 fourierdlem54 46158 fourierdlem77 46181 sge0rpcpnf 46419 hoicvr 46546 smflimsuplem7 46824 |
| Copyright terms: Public domain | W3C validator |