| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl2 1193 simpl2l 1227 simpl2r 1228 simpl21 1252 simpl22 1253 simpl23 1254 fcofo 7222 cocan1 7225 ordiso2 9401 fin1a2lem9 10299 fin1a2lem12 10302 gchpwdom 10561 winainflem 10584 bpolydif 15962 dvdsmodexp 16171 muldvds1 16191 lcmdvds 16519 ramcl 16941 oddvdsnn0 19456 ghmplusg 19758 frlmsslss2 21712 frlmsslsp 21733 islindf4 21775 mamures 22312 matepmcl 22377 matepm2cl 22378 pmatcollpw2lem 22692 cnpnei 23179 ssref 23427 qtopss 23630 elfm2 23863 flffbas 23910 cnpfcf 23956 deg1ldg 26024 brbtwn2 28883 colinearalg 28888 axsegconlem1 28895 upgrpredgv 29117 cusgrrusgr 29560 upgrewlkle2 29585 wwlksm1edg 29859 clwwlkf 30027 wwlksext2clwwlk 30037 nvmul0or 30630 hoadddi 31783 volfiniune 34243 bnj548 34909 funsseq 35812 nn0prpwlem 36364 fnemeet1 36408 curfv 37648 lindsadd 37661 keridl 38080 pmapglbx 39816 elpaddn0 39847 paddasslem9 39875 paddasslem10 39876 cdleme42mgN 40535 relexpxpmin 43758 ntrclsk3 44111 n0p 45090 wessf1ornlem 45230 infxr 45413 lptre2pt 45686 dvnprodlem1 45992 fourierdlem42 46195 fourierdlem48 46200 fourierdlem54 46206 fourierdlem77 46229 sge0rpcpnf 46467 hoicvr 46594 smflimsuplem7 46872 |
| Copyright terms: Public domain | W3C validator |