| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl2 1193 simpl2l 1227 simpl2r 1228 simpl21 1252 simpl22 1253 simpl23 1254 fcofo 7286 cocan1 7289 ordiso2 9534 fin1a2lem9 10427 fin1a2lem12 10430 gchpwdom 10689 winainflem 10712 bpolydif 16076 dvdsmodexp 16285 muldvds1 16305 lcmdvds 16632 ramcl 17054 oddvdsnn0 19530 ghmplusg 19832 frlmsslss2 21740 frlmsslsp 21761 islindf4 21803 mamures 22340 matepmcl 22405 matepm2cl 22406 pmatcollpw2lem 22720 cnpnei 23207 ssref 23455 qtopss 23658 elfm2 23891 flffbas 23938 cnpfcf 23984 deg1ldg 26054 brbtwn2 28889 colinearalg 28894 axsegconlem1 28901 upgrpredgv 29123 cusgrrusgr 29566 upgrewlkle2 29591 wwlksm1edg 29868 clwwlkf 30033 wwlksext2clwwlk 30043 nvmul0or 30636 hoadddi 31789 volfiniune 34266 bnj548 34933 funsseq 35790 nn0prpwlem 36345 fnemeet1 36389 curfv 37629 lindsadd 37642 keridl 38061 pmapglbx 39793 elpaddn0 39824 paddasslem9 39852 paddasslem10 39853 cdleme42mgN 40512 relexpxpmin 43716 ntrclsk3 44069 n0p 45049 wessf1ornlem 45189 infxr 45374 lptre2pt 45649 dvnprodlem1 45955 fourierdlem42 46158 fourierdlem48 46163 fourierdlem54 46169 fourierdlem77 46192 sge0rpcpnf 46430 hoicvr 46557 smflimsuplem7 46835 |
| Copyright terms: Public domain | W3C validator |