| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl2 1193 simpl2l 1227 simpl2r 1228 simpl21 1252 simpl22 1253 simpl23 1254 fcofo 7225 cocan1 7228 ordiso2 9407 fin1a2lem9 10302 fin1a2lem12 10305 gchpwdom 10564 winainflem 10587 bpolydif 15962 dvdsmodexp 16171 muldvds1 16191 lcmdvds 16519 ramcl 16941 oddvdsnn0 19423 ghmplusg 19725 frlmsslss2 21682 frlmsslsp 21703 islindf4 21745 mamures 22282 matepmcl 22347 matepm2cl 22348 pmatcollpw2lem 22662 cnpnei 23149 ssref 23397 qtopss 23600 elfm2 23833 flffbas 23880 cnpfcf 23926 deg1ldg 25995 brbtwn2 28850 colinearalg 28855 axsegconlem1 28862 upgrpredgv 29084 cusgrrusgr 29527 upgrewlkle2 29552 wwlksm1edg 29826 clwwlkf 29991 wwlksext2clwwlk 30001 nvmul0or 30594 hoadddi 31747 volfiniune 34197 bnj548 34864 funsseq 35741 nn0prpwlem 36296 fnemeet1 36340 curfv 37580 lindsadd 37593 keridl 38012 pmapglbx 39748 elpaddn0 39779 paddasslem9 39807 paddasslem10 39808 cdleme42mgN 40467 relexpxpmin 43690 ntrclsk3 44043 n0p 45023 wessf1ornlem 45163 infxr 45346 lptre2pt 45621 dvnprodlem1 45927 fourierdlem42 46130 fourierdlem48 46135 fourierdlem54 46141 fourierdlem77 46164 sge0rpcpnf 46402 hoicvr 46529 smflimsuplem7 46807 |
| Copyright terms: Public domain | W3C validator |