| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1167 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl2 1193 simpl2l 1227 simpl2r 1228 simpl21 1252 simpl22 1253 simpl23 1254 fcofo 7245 cocan1 7248 ordiso2 9444 fin1a2lem9 10337 fin1a2lem12 10340 gchpwdom 10599 winainflem 10622 bpolydif 15997 dvdsmodexp 16206 muldvds1 16226 lcmdvds 16554 ramcl 16976 oddvdsnn0 19450 ghmplusg 19752 frlmsslss2 21660 frlmsslsp 21681 islindf4 21723 mamures 22260 matepmcl 22325 matepm2cl 22326 pmatcollpw2lem 22640 cnpnei 23127 ssref 23375 qtopss 23578 elfm2 23811 flffbas 23858 cnpfcf 23904 deg1ldg 25973 brbtwn2 28808 colinearalg 28813 axsegconlem1 28820 upgrpredgv 29042 cusgrrusgr 29485 upgrewlkle2 29510 wwlksm1edg 29784 clwwlkf 29949 wwlksext2clwwlk 29959 nvmul0or 30552 hoadddi 31705 volfiniune 34193 bnj548 34860 funsseq 35728 nn0prpwlem 36283 fnemeet1 36327 curfv 37567 lindsadd 37580 keridl 37999 pmapglbx 39736 elpaddn0 39767 paddasslem9 39795 paddasslem10 39796 cdleme42mgN 40455 relexpxpmin 43679 ntrclsk3 44032 n0p 45012 wessf1ornlem 45152 infxr 45336 lptre2pt 45611 dvnprodlem1 45917 fourierdlem42 46120 fourierdlem48 46125 fourierdlem54 46131 fourierdlem77 46154 sge0rpcpnf 46392 hoicvr 46519 smflimsuplem7 46797 |
| Copyright terms: Public domain | W3C validator |