| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1166 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpl2 1192 simpl2l 1226 simpl2r 1227 simpl21 1251 simpl22 1252 simpl23 1253 fcofo 7309 cocan1 7312 ordiso2 9556 fin1a2lem9 10449 fin1a2lem12 10452 gchpwdom 10711 winainflem 10734 bpolydif 16092 dvdsmodexp 16299 muldvds1 16319 lcmdvds 16646 ramcl 17068 oddvdsnn0 19563 ghmplusg 19865 frlmsslss2 21796 frlmsslsp 21817 islindf4 21859 mamures 22402 matepmcl 22469 matepm2cl 22470 pmatcollpw2lem 22784 cnpnei 23273 ssref 23521 qtopss 23724 elfm2 23957 flffbas 24004 cnpfcf 24050 deg1ldg 26132 brbtwn2 28921 colinearalg 28926 axsegconlem1 28933 upgrpredgv 29157 cusgrrusgr 29600 upgrewlkle2 29625 wwlksm1edg 29902 clwwlkf 30067 wwlksext2clwwlk 30077 nvmul0or 30670 hoadddi 31823 volfiniune 34232 bnj548 34912 funsseq 35769 nn0prpwlem 36324 fnemeet1 36368 curfv 37608 lindsadd 37621 keridl 38040 pmapglbx 39772 elpaddn0 39803 paddasslem9 39831 paddasslem10 39832 cdleme42mgN 40491 factwoffsmonot 42244 relexpxpmin 43735 ntrclsk3 44088 n0p 45055 wessf1ornlem 45195 infxr 45383 lptre2pt 45660 dvnprodlem1 45966 fourierdlem42 46169 fourierdlem48 46174 fourierdlem54 46180 fourierdlem77 46203 sge0rpcpnf 46441 hoicvr 46568 smflimsuplem7 46846 |
| Copyright terms: Public domain | W3C validator |