![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1166 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: simpl2 1192 simpl2l 1226 simpl2r 1227 simpl21 1251 simpl22 1252 simpl23 1253 fcofo 7324 cocan1 7327 ordiso2 9584 fin1a2lem9 10477 fin1a2lem12 10480 gchpwdom 10739 winainflem 10762 bpolydif 16103 dvdsmodexp 16310 muldvds1 16329 lcmdvds 16655 ramcl 17076 oddvdsnn0 19586 ghmplusg 19888 frlmsslss2 21818 frlmsslsp 21839 islindf4 21881 mamures 22422 matepmcl 22489 matepm2cl 22490 pmatcollpw2lem 22804 cnpnei 23293 ssref 23541 qtopss 23744 elfm2 23977 flffbas 24024 cnpfcf 24070 deg1ldg 26151 brbtwn2 28938 colinearalg 28943 axsegconlem1 28950 upgrpredgv 29174 cusgrrusgr 29617 upgrewlkle2 29642 wwlksm1edg 29914 clwwlkf 30079 wwlksext2clwwlk 30089 nvmul0or 30682 hoadddi 31835 volfiniune 34194 bnj548 34873 funsseq 35731 nn0prpwlem 36288 fnemeet1 36332 curfv 37560 lindsadd 37573 keridl 37992 pmapglbx 39726 elpaddn0 39757 paddasslem9 39785 paddasslem10 39786 cdleme42mgN 40445 factwoffsmonot 42199 relexpxpmin 43679 ntrclsk3 44032 n0p 44945 wessf1ornlem 45092 infxr 45282 lptre2pt 45561 dvnprodlem1 45867 fourierdlem42 46070 fourierdlem48 46075 fourierdlem54 46081 fourierdlem77 46104 sge0rpcpnf 46342 hoicvr 46469 smflimsuplem7 46747 |
Copyright terms: Public domain | W3C validator |