![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantlr 713 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1166 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: simpl2 1192 simpl2l 1226 simpl2r 1227 simpl21 1251 simpl22 1252 simpl23 1253 fcofo 7288 cocan1 7291 ordiso2 9512 fin1a2lem9 10405 fin1a2lem12 10408 gchpwdom 10667 winainflem 10690 bpolydif 16001 dvdsmodexp 16207 muldvds1 16226 lcmdvds 16547 ramcl 16964 oddvdsnn0 19414 ghmplusg 19716 frlmsslss2 21336 frlmsslsp 21357 islindf4 21399 mamures 21899 matepmcl 21971 matepm2cl 21972 pmatcollpw2lem 22286 cnpnei 22775 ssref 23023 qtopss 23226 elfm2 23459 flffbas 23506 cnpfcf 23552 deg1ldg 25617 brbtwn2 28201 colinearalg 28206 axsegconlem1 28213 upgrpredgv 28437 cusgrrusgr 28876 upgrewlkle2 28901 wwlksm1edg 29173 clwwlkf 29338 wwlksext2clwwlk 29348 nvmul0or 29941 hoadddi 31094 volfiniune 33297 bnj548 33977 funsseq 34808 nn0prpwlem 35293 fnemeet1 35337 curfv 36554 lindsadd 36567 keridl 36986 pmapglbx 38726 elpaddn0 38757 paddasslem9 38785 paddasslem10 38786 cdleme42mgN 39445 factwoffsmonot 41109 relexpxpmin 42550 ntrclsk3 42903 n0p 43812 wessf1ornlem 43963 infxr 44156 lptre2pt 44435 dvnprodlem1 44741 fourierdlem42 44944 fourierdlem48 44949 fourierdlem54 44955 fourierdlem77 44978 sge0rpcpnf 45216 hoicvr 45343 smflimsuplem7 45621 isomgrsym 46583 |
Copyright terms: Public domain | W3C validator |