Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antl2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantlr 712 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
3 | 2 | 3adantl1 1165 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: simpl2 1191 simpl2l 1225 simpl2r 1226 simpl21 1250 simpl22 1251 simpl23 1252 fcofo 7169 cocan1 7172 ordiso2 9283 fin1a2lem9 10173 fin1a2lem12 10176 gchpwdom 10435 winainflem 10458 bpolydif 15774 dvdsmodexp 15980 muldvds1 15999 lcmdvds 16322 ramcl 16739 gsumccatOLD 18488 oddvdsnn0 19161 ghmplusg 19456 frlmsslss2 20991 frlmsslsp 21012 islindf4 21054 mamures 21548 matepmcl 21620 matepm2cl 21621 pmatcollpw2lem 21935 cnpnei 22424 ssref 22672 qtopss 22875 elfm2 23108 flffbas 23155 cnpfcf 23201 deg1ldg 25266 brbtwn2 27282 colinearalg 27287 axsegconlem1 27294 upgrpredgv 27518 cusgrrusgr 27957 upgrewlkle2 27982 wwlksm1edg 28255 clwwlkf 28420 wwlksext2clwwlk 28430 nvmul0or 29021 hoadddi 30174 volfiniune 32207 bnj548 32886 funsseq 33751 nn0prpwlem 34520 fnemeet1 34564 curfv 35766 lindsadd 35779 keridl 36199 pmapglbx 37790 elpaddn0 37821 paddasslem9 37849 paddasslem10 37850 cdleme42mgN 38509 factwoffsmonot 40170 relexpxpmin 41332 ntrclsk3 41687 n0p 42598 wessf1ornlem 42729 infxr 42913 lptre2pt 43188 dvnprodlem1 43494 fourierdlem42 43697 fourierdlem48 43702 fourierdlem54 43708 fourierdlem77 43731 sge0rpcpnf 43966 hoicvr 44093 smflimsuplem7 44370 isomgrsym 45299 |
Copyright terms: Public domain | W3C validator |