![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss12 | Structured version Visualization version GIF version |
Description: Subset law for projective subspace sum. (unss12 4211 analog.) (Contributed by NM, 7-Mar-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddss12 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝐾 ∈ 𝐵) | |
2 | simpl2 1192 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑌 ⊆ 𝐴) | |
3 | sstr 4017 | . . . . . . . 8 ⊢ ((𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑍 ⊆ 𝐴) | |
4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊) → 𝑍 ⊆ 𝐴) |
5 | 4 | ad2ant2l 745 | . . . . . 6 ⊢ (((𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
6 | 5 | 3adantl1 1166 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
7 | 1, 2, 6 | 3jca 1128 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) |
8 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑋 ⊆ 𝑌) | |
9 | padd0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | padd0.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
11 | 9, 10 | paddss1 39774 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))) |
12 | 7, 8, 11 | sylc 65 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)) |
13 | 9, 10 | paddss2 39775 | . . . . . 6 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
14 | 13 | 3com23 1126 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
15 | 14 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ 𝑍 ⊆ 𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
16 | 15 | adantrl 715 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
17 | 12, 16 | sstrd 4019 | . 2 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)) |
18 | 17 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Atomscatm 39219 +𝑃cpadd 39752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-padd 39753 |
This theorem is referenced by: paddssw1 39800 paddunN 39884 pl42lem2N 39937 |
Copyright terms: Public domain | W3C validator |