| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss12 | Structured version Visualization version GIF version | ||
| Description: Subset law for projective subspace sum. (unss12 4163 analog.) (Contributed by NM, 7-Mar-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddss12 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝐾 ∈ 𝐵) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑌 ⊆ 𝐴) | |
| 3 | sstr 3967 | . . . . . . . 8 ⊢ ((𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑍 ⊆ 𝐴) | |
| 4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊) → 𝑍 ⊆ 𝐴) |
| 5 | 4 | ad2ant2l 746 | . . . . . 6 ⊢ (((𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
| 6 | 5 | 3adantl1 1167 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
| 7 | 1, 2, 6 | 3jca 1128 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) |
| 8 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑋 ⊆ 𝑌) | |
| 9 | padd0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | padd0.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
| 11 | 9, 10 | paddss1 39836 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))) |
| 12 | 7, 8, 11 | sylc 65 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)) |
| 13 | 9, 10 | paddss2 39837 | . . . . . 6 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| 14 | 13 | 3com23 1126 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| 15 | 14 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ 𝑍 ⊆ 𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 16 | 15 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 17 | 12, 16 | sstrd 3969 | . 2 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 18 | 17 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Atomscatm 39281 +𝑃cpadd 39814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-padd 39815 |
| This theorem is referenced by: paddssw1 39862 paddunN 39946 pl42lem2N 39999 |
| Copyright terms: Public domain | W3C validator |