| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss12 | Structured version Visualization version GIF version | ||
| Description: Subset law for projective subspace sum. (unss12 4151 analog.) (Contributed by NM, 7-Mar-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddss12 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝐾 ∈ 𝐵) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑌 ⊆ 𝐴) | |
| 3 | sstr 3955 | . . . . . . . 8 ⊢ ((𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑍 ⊆ 𝐴) | |
| 4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊) → 𝑍 ⊆ 𝐴) |
| 5 | 4 | ad2ant2l 746 | . . . . . 6 ⊢ (((𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
| 6 | 5 | 3adantl1 1167 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
| 7 | 1, 2, 6 | 3jca 1128 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) |
| 8 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑋 ⊆ 𝑌) | |
| 9 | padd0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | padd0.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
| 11 | 9, 10 | paddss1 39811 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))) |
| 12 | 7, 8, 11 | sylc 65 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)) |
| 13 | 9, 10 | paddss2 39812 | . . . . . 6 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| 14 | 13 | 3com23 1126 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| 15 | 14 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ 𝑍 ⊆ 𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 16 | 15 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 17 | 12, 16 | sstrd 3957 | . 2 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 18 | 17 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Atomscatm 39256 +𝑃cpadd 39789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-padd 39790 |
| This theorem is referenced by: paddssw1 39837 paddunN 39921 pl42lem2N 39974 |
| Copyright terms: Public domain | W3C validator |