Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss12 Structured version   Visualization version   GIF version

Theorem paddss12 39821
Description: Subset law for projective subspace sum. (unss12 4188 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss12 ((𝐾𝐵𝑌𝐴𝑊𝐴) → ((𝑋𝑌𝑍𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)))

Proof of Theorem paddss12
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝐾𝐵)
2 simpl2 1193 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑌𝐴)
3 sstr 3992 . . . . . . . 8 ((𝑍𝑊𝑊𝐴) → 𝑍𝐴)
43ancoms 458 . . . . . . 7 ((𝑊𝐴𝑍𝑊) → 𝑍𝐴)
54ad2ant2l 746 . . . . . 6 (((𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑍𝐴)
653adantl1 1167 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑍𝐴)
71, 2, 63jca 1129 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝐾𝐵𝑌𝐴𝑍𝐴))
8 simprl 771 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑋𝑌)
9 padd0.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 padd0.p . . . . 5 + = (+𝑃𝐾)
119, 10paddss1 39819 . . . 4 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))
127, 8, 11sylc 65 . . 3 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))
139, 10paddss2 39820 . . . . . 6 ((𝐾𝐵𝑊𝐴𝑌𝐴) → (𝑍𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)))
14133com23 1127 . . . . 5 ((𝐾𝐵𝑌𝐴𝑊𝐴) → (𝑍𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)))
1514imp 406 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ 𝑍𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))
1615adantrl 716 . . 3 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))
1712, 16sstrd 3994 . 2 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))
1817ex 412 1 ((𝐾𝐵𝑌𝐴𝑊𝐴) → ((𝑋𝑌𝑍𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  cfv 6561  (class class class)co 7431  Atomscatm 39264  +𝑃cpadd 39797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-padd 39798
This theorem is referenced by:  paddssw1  39845  paddunN  39929  pl42lem2N  39982
  Copyright terms: Public domain W3C validator