| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss12 | Structured version Visualization version GIF version | ||
| Description: Subset law for projective subspace sum. (unss12 4188 analog.) (Contributed by NM, 7-Mar-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddss12 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝐾 ∈ 𝐵) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑌 ⊆ 𝐴) | |
| 3 | sstr 3992 | . . . . . . . 8 ⊢ ((𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑍 ⊆ 𝐴) | |
| 4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊) → 𝑍 ⊆ 𝐴) |
| 5 | 4 | ad2ant2l 746 | . . . . . 6 ⊢ (((𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
| 6 | 5 | 3adantl1 1167 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
| 7 | 1, 2, 6 | 3jca 1129 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) |
| 8 | simprl 771 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑋 ⊆ 𝑌) | |
| 9 | padd0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | padd0.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
| 11 | 9, 10 | paddss1 39819 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))) |
| 12 | 7, 8, 11 | sylc 65 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)) |
| 13 | 9, 10 | paddss2 39820 | . . . . . 6 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| 14 | 13 | 3com23 1127 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| 15 | 14 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ 𝑍 ⊆ 𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 16 | 15 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 17 | 12, 16 | sstrd 3994 | . 2 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)) |
| 18 | 17 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 Atomscatm 39264 +𝑃cpadd 39797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-padd 39798 |
| This theorem is referenced by: paddssw1 39845 paddunN 39929 pl42lem2N 39982 |
| Copyright terms: Public domain | W3C validator |