Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss12 Structured version   Visualization version   GIF version

Theorem paddss12 39928
Description: Subset law for projective subspace sum. (unss12 4135 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss12 ((𝐾𝐵𝑌𝐴𝑊𝐴) → ((𝑋𝑌𝑍𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)))

Proof of Theorem paddss12
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝐾𝐵)
2 simpl2 1193 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑌𝐴)
3 sstr 3938 . . . . . . . 8 ((𝑍𝑊𝑊𝐴) → 𝑍𝐴)
43ancoms 458 . . . . . . 7 ((𝑊𝐴𝑍𝑊) → 𝑍𝐴)
54ad2ant2l 746 . . . . . 6 (((𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑍𝐴)
653adantl1 1167 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑍𝐴)
71, 2, 63jca 1128 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝐾𝐵𝑌𝐴𝑍𝐴))
8 simprl 770 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑋𝑌)
9 padd0.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 padd0.p . . . . 5 + = (+𝑃𝐾)
119, 10paddss1 39926 . . . 4 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))
127, 8, 11sylc 65 . . 3 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))
139, 10paddss2 39927 . . . . . 6 ((𝐾𝐵𝑊𝐴𝑌𝐴) → (𝑍𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)))
14133com23 1126 . . . . 5 ((𝐾𝐵𝑌𝐴𝑊𝐴) → (𝑍𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)))
1514imp 406 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ 𝑍𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))
1615adantrl 716 . . 3 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))
1712, 16sstrd 3940 . 2 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))
1817ex 412 1 ((𝐾𝐵𝑌𝐴𝑊𝐴) → ((𝑋𝑌𝑍𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  cfv 6481  (class class class)co 7346  Atomscatm 39372  +𝑃cpadd 39904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-padd 39905
This theorem is referenced by:  paddssw1  39952  paddunN  40036  pl42lem2N  40089
  Copyright terms: Public domain W3C validator