Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss12 Structured version   Visualization version   GIF version

Theorem paddss12 37570
Description: Subset law for projective subspace sum. (unss12 4096 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss12 ((𝐾𝐵𝑌𝐴𝑊𝐴) → ((𝑋𝑌𝑍𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)))

Proof of Theorem paddss12
StepHypRef Expression
1 simpl1 1193 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝐾𝐵)
2 simpl2 1194 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑌𝐴)
3 sstr 3909 . . . . . . . 8 ((𝑍𝑊𝑊𝐴) → 𝑍𝐴)
43ancoms 462 . . . . . . 7 ((𝑊𝐴𝑍𝑊) → 𝑍𝐴)
54ad2ant2l 746 . . . . . 6 (((𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑍𝐴)
653adantl1 1168 . . . . 5 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑍𝐴)
71, 2, 63jca 1130 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝐾𝐵𝑌𝐴𝑍𝐴))
8 simprl 771 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → 𝑋𝑌)
9 padd0.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 padd0.p . . . . 5 + = (+𝑃𝐾)
119, 10paddss1 37568 . . . 4 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))
127, 8, 11sylc 65 . . 3 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))
139, 10paddss2 37569 . . . . . 6 ((𝐾𝐵𝑊𝐴𝑌𝐴) → (𝑍𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)))
14133com23 1128 . . . . 5 ((𝐾𝐵𝑌𝐴𝑊𝐴) → (𝑍𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)))
1514imp 410 . . . 4 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ 𝑍𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))
1615adantrl 716 . . 3 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))
1712, 16sstrd 3911 . 2 (((𝐾𝐵𝑌𝐴𝑊𝐴) ∧ (𝑋𝑌𝑍𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))
1817ex 416 1 ((𝐾𝐵𝑌𝐴𝑊𝐴) → ((𝑋𝑌𝑍𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wss 3866  cfv 6380  (class class class)co 7213  Atomscatm 37014  +𝑃cpadd 37546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-padd 37547
This theorem is referenced by:  paddssw1  37594  paddunN  37678  pl42lem2N  37731
  Copyright terms: Public domain W3C validator