Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss12 | Structured version Visualization version GIF version |
Description: Subset law for projective subspace sum. (unss12 4096 analog.) (Contributed by NM, 7-Mar-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddss12 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1193 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝐾 ∈ 𝐵) | |
2 | simpl2 1194 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑌 ⊆ 𝐴) | |
3 | sstr 3909 | . . . . . . . 8 ⊢ ((𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑍 ⊆ 𝐴) | |
4 | 3 | ancoms 462 | . . . . . . 7 ⊢ ((𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊) → 𝑍 ⊆ 𝐴) |
5 | 4 | ad2ant2l 746 | . . . . . 6 ⊢ (((𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
6 | 5 | 3adantl1 1168 | . . . . 5 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑍 ⊆ 𝐴) |
7 | 1, 2, 6 | 3jca 1130 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) |
8 | simprl 771 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → 𝑋 ⊆ 𝑌) | |
9 | padd0.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | padd0.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
11 | 9, 10 | paddss1 37568 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 ⊆ 𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))) |
12 | 7, 8, 11 | sylc 65 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)) |
13 | 9, 10 | paddss2 37569 | . . . . . 6 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
14 | 13 | 3com23 1128 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑍 ⊆ 𝑊 → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊))) |
15 | 14 | imp 410 | . . . 4 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ 𝑍 ⊆ 𝑊) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
16 | 15 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑌 + 𝑍) ⊆ (𝑌 + 𝑊)) |
17 | 12, 16 | sstrd 3911 | . 2 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) ∧ (𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊)) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊)) |
18 | 17 | ex 416 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Atomscatm 37014 +𝑃cpadd 37546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-padd 37547 |
This theorem is referenced by: paddssw1 37594 paddunN 37678 pl42lem2N 37731 |
Copyright terms: Public domain | W3C validator |