Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > marrepcl | Structured version Visualization version GIF version |
Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019.) |
Ref | Expression |
---|---|
marrepcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marrepcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
marrepcl | ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marrepcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marrepcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | eqid 2739 | . . . 4 ⊢ (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅) | |
4 | eqid 2739 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | marrepval 21692 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
6 | 5 | 3adantl1 1164 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
7 | eqid 2739 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 1, 2 | matrcl 21540 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
10 | 9 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ Fin) |
11 | 10 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑁 ∈ Fin) |
12 | simpl1 1189 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
13 | simp3 1136 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅)) | |
14 | 7, 4 | ring0cl 19789 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
15 | 14 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (0g‘𝑅) ∈ (Base‘𝑅)) |
16 | 13, 15 | ifcld 4510 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)) ∈ (Base‘𝑅)) |
17 | 16 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)) ∈ (Base‘𝑅)) |
18 | 17 | 3ad2ant1 1131 | . . . 4 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)) ∈ (Base‘𝑅)) |
19 | simp2 1135 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
20 | simp3 1136 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
21 | 2 | eleq2i 2831 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
22 | 21 | biimpi 215 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
23 | 22 | 3ad2ant2 1132 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑀 ∈ (Base‘𝐴)) |
24 | 23 | adantr 480 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐴)) |
25 | 24 | 3ad2ant1 1131 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
26 | 1, 7 | matecl 21555 | . . . . 5 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
27 | 19, 20, 25, 26 | syl3anc 1369 | . . . 4 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
28 | 18, 27 | ifcld 4510 | . . 3 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)) ∈ (Base‘𝑅)) |
29 | 1, 7, 2, 11, 12, 28 | matbas2d 21553 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) |
30 | 6, 29 | eqeltrd 2840 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ifcif 4464 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 Fincfn 8707 Basecbs 16893 0gc0g 17131 Ringcrg 19764 Mat cmat 21535 matRRep cmarrep 21686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-ot 4575 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-0g 17133 df-prds 17139 df-pws 17141 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-ring 19766 df-sra 20415 df-rgmod 20416 df-dsmm 20920 df-frlm 20935 df-mat 21536 df-marrep 21688 |
This theorem is referenced by: minmar1cl 21781 smadiadetg 21803 submatminr1 31739 |
Copyright terms: Public domain | W3C validator |