| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > marrepcl | Structured version Visualization version GIF version | ||
| Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019.) |
| Ref | Expression |
|---|---|
| marrepcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marrepcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| marrepcl | ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marrepcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | marrepcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | eqid 2731 | . . . 4 ⊢ (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅) | |
| 4 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 1, 2, 3, 4 | marrepval 22477 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 6 | 5 | 3adantl1 1167 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 7 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 1, 2 | matrcl 22327 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 10 | 9 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ Fin) |
| 11 | 10 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 12 | simpl1 1192 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 13 | simp3 1138 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅)) | |
| 14 | 7, 4 | ring0cl 20185 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 16 | 13, 15 | ifcld 4519 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 18 | 17 | 3ad2ant1 1133 | . . . 4 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 19 | simp2 1137 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 20 | simp3 1138 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 21 | 2 | eleq2i 2823 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 22 | 21 | biimpi 216 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑀 ∈ (Base‘𝐴)) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐴)) |
| 25 | 24 | 3ad2ant1 1133 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 26 | 1, 7 | matecl 22340 | . . . . 5 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 27 | 19, 20, 25, 26 | syl3anc 1373 | . . . 4 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 28 | 18, 27 | ifcld 4519 | . . 3 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)) ∈ (Base‘𝑅)) |
| 29 | 1, 7, 2, 11, 12, 28 | matbas2d 22338 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) |
| 30 | 6, 29 | eqeltrd 2831 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4472 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Fincfn 8869 Basecbs 17120 0gc0g 17343 Ringcrg 20151 Mat cmat 22322 matRRep cmarrep 22471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ring 20153 df-sra 21107 df-rgmod 21108 df-dsmm 21669 df-frlm 21684 df-mat 22323 df-marrep 22473 |
| This theorem is referenced by: minmar1cl 22566 smadiadetg 22588 submatminr1 33823 |
| Copyright terms: Public domain | W3C validator |