MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepcl Structured version   Visualization version   GIF version

Theorem marrepcl 22591
Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019.)
Hypotheses
Ref Expression
marrepcl.a 𝐴 = (𝑁 Mat 𝑅)
marrepcl.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
marrepcl (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵)

Proof of Theorem marrepcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marrepcl.b . . . 4 𝐵 = (Base‘𝐴)
3 eqid 2740 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
4 eqid 2740 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4marrepval 22589 . . 3 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
653adantl1 1166 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
81, 2matrcl 22437 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 494 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant2 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ Fin)
1110adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑁 ∈ Fin)
12 simpl1 1191 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
13 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅))
147, 4ring0cl 20290 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
15143ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (0g𝑅) ∈ (Base‘𝑅))
1613, 15ifcld 4594 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
1716adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
18173ad2ant1 1133 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
19 simp2 1137 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
20 simp3 1138 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
212eleq2i 2836 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221biimpi 216 . . . . . . . 8 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
23223ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑀 ∈ (Base‘𝐴))
2423adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑀 ∈ (Base‘𝐴))
25243ad2ant1 1133 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
261, 7matecl 22452 . . . . 5 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2719, 20, 25, 26syl3anc 1371 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2818, 27ifcld 4594 . . 3 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗)) ∈ (Base‘𝑅))
291, 7, 2, 11, 12, 28matbas2d 22450 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
306, 29eqeltrd 2844 1 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  0gc0g 17499  Ringcrg 20260   Mat cmat 22432   matRRep cmarrep 22583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-marrep 22585
This theorem is referenced by:  minmar1cl  22678  smadiadetg  22700  submatminr1  33756
  Copyright terms: Public domain W3C validator