MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepcl Structured version   Visualization version   GIF version

Theorem marrepcl 21173
Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019.)
Hypotheses
Ref Expression
marrepcl.a 𝐴 = (𝑁 Mat 𝑅)
marrepcl.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
marrepcl (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵)

Proof of Theorem marrepcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marrepcl.b . . . 4 𝐵 = (Base‘𝐴)
3 eqid 2801 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
4 eqid 2801 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4marrepval 21171 . . 3 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
653adantl1 1163 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7 eqid 2801 . . 3 (Base‘𝑅) = (Base‘𝑅)
81, 2matrcl 21021 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 498 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant2 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ Fin)
1110adantr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑁 ∈ Fin)
12 simpl1 1188 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
13 simp3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅))
147, 4ring0cl 19319 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
15143ad2ant1 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (0g𝑅) ∈ (Base‘𝑅))
1613, 15ifcld 4473 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
1716adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
18173ad2ant1 1130 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
19 simp2 1134 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
20 simp3 1135 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
212eleq2i 2884 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221biimpi 219 . . . . . . . 8 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
23223ad2ant2 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑀 ∈ (Base‘𝐴))
2423adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑀 ∈ (Base‘𝐴))
25243ad2ant1 1130 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
261, 7matecl 21034 . . . . 5 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2719, 20, 25, 26syl3anc 1368 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2818, 27ifcld 4473 . . 3 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗)) ∈ (Base‘𝑅))
291, 7, 2, 11, 12, 28matbas2d 21032 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
306, 29eqeltrd 2893 1 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  Vcvv 3444  ifcif 4428  cfv 6328  (class class class)co 7139  cmpo 7141  Fincfn 8496  Basecbs 16479  0gc0g 16709  Ringcrg 19294   Mat cmat 21016   matRRep cmarrep 21165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-ring 19296  df-sra 19941  df-rgmod 19942  df-dsmm 20425  df-frlm 20440  df-mat 21017  df-marrep 21167
This theorem is referenced by:  minmar1cl  21260  smadiadetg  21282  submatminr1  31167
  Copyright terms: Public domain W3C validator