Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ 𝐴) |
2 | | cnvimass 5992 |
. . . . . . 7
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
3 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐹:𝑌⟶𝑋) |
4 | 2, 3 | fssdm 6629 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑥) ⊆ 𝑌) |
5 | 1, 4 | sselpwd 5251 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
6 | 5 | adantr 481 |
. . . 4
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
7 | 6 | fmpttd 6998 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)):𝐿⟶𝒫 𝑌) |
8 | 7 | frnd 6617 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
9 | | filtop 23015 |
. . . . . . . 8
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
10 | 9 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ 𝐿) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑋 ∈ 𝐿) |
12 | | fimacnv 6631 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ 𝑋) = 𝑌) |
13 | 12 | eqcomd 2745 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → 𝑌 = (◡𝐹 “ 𝑋)) |
14 | 13 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑌 = (◡𝐹 “ 𝑋)) |
15 | 14 | adantr 481 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 = (◡𝐹 “ 𝑋)) |
16 | | imaeq2 5968 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑋)) |
17 | 16 | rspceeqv 3576 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝑌 = (◡𝐹 “ 𝑋)) → ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥)) |
18 | 11, 15, 17 | syl2anc 584 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥)) |
19 | | eqid 2739 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
20 | 19 | elrnmpt 5868 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐴 → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
21 | 20 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
22 | 21 | adantr 481 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
23 | 18, 22 | mpbird 256 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
24 | 23 | ne0d 4270 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅) |
25 | | 0nelfil 23009 |
. . . . . . 7
⊢ (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐿) |
26 | 25 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → ¬ ∅ ∈ 𝐿) |
27 | 26 | adantr 481 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ¬ ∅ ∈ 𝐿) |
28 | | 0ex 5232 |
. . . . . . 7
⊢ ∅
∈ V |
29 | 19 | elrnmpt 5868 |
. . . . . . 7
⊢ (∅
∈ V → (∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥))) |
30 | 28, 29 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥)) |
31 | | ffn 6609 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
32 | | fvelrnb 6839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑌⟶𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
34 | 33 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
35 | 34 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
36 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑧) = 𝑦 → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
37 | 36 | biimparc 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) ∈ 𝑥) |
38 | 37 | ad2ant2l 743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → (𝐹‘𝑧) ∈ 𝑥) |
39 | 38 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → (𝐹‘𝑧) ∈ 𝑥) |
40 | | ffun 6612 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
41 | 40 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → Fun 𝐹) |
42 | 41 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → Fun 𝐹) |
43 | | fdm 6618 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
44 | 43 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝑌⟶𝑋 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝑌)) |
45 | 44 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
46 | 45 | 3ad2antl3 1186 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
47 | 46 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
48 | 47 | ad2ant2r 744 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹) |
49 | | fvimacnv 6939 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑧 ∈ (◡𝐹 “ 𝑥))) |
50 | 42, 48, 49 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑧 ∈ (◡𝐹 “ 𝑥))) |
51 | 39, 50 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ (◡𝐹 “ 𝑥)) |
52 | | n0i 4268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (◡𝐹 “ 𝑥) → ¬ (◡𝐹 “ 𝑥) = ∅) |
53 | | eqcom 2746 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹 “ 𝑥) = ∅ ↔ ∅ = (◡𝐹 “ 𝑥)) |
54 | 52, 53 | sylnib 328 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (◡𝐹 “ 𝑥) → ¬ ∅ = (◡𝐹 “ 𝑥)) |
55 | 51, 54 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → ¬ ∅ = (◡𝐹 “ 𝑥)) |
56 | 55 | rexlimdvaa 3215 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦 → ¬ ∅ = (◡𝐹 “ 𝑥))) |
57 | 35, 56 | sylbid 239 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (◡𝐹 “ 𝑥))) |
58 | 57 | con2d 134 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (∅ = (◡𝐹 “ 𝑥) → ¬ 𝑦 ∈ ran 𝐹)) |
59 | 58 | expr 457 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑦 ∈ 𝑥 → (∅ = (◡𝐹 “ 𝑥) → ¬ 𝑦 ∈ ran 𝐹))) |
60 | 59 | com23 86 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (∅ = (◡𝐹 “ 𝑥) → (𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹))) |
61 | 60 | impr 455 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → (𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹)) |
62 | 61 | alrimiv 1931 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹)) |
63 | | imnan 400 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹)) |
64 | | elin 3904 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹)) |
65 | 63, 64 | xchbinxr 335 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
66 | 65 | albii 1822 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
67 | | eq0 4278 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
68 | | eqcom 2746 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹)) |
69 | 66, 67, 68 | 3bitr2i 299 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹)) |
70 | 62, 69 | sylib 217 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∅ = (𝑥 ∩ ran 𝐹)) |
71 | | simpll2 1212 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → 𝐿 ∈ (Fil‘𝑋)) |
72 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → 𝑥 ∈ 𝐿) |
73 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ran 𝐹 ∈ 𝐿) |
74 | | filin 23014 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
75 | 71, 72, 73, 74 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
76 | 70, 75 | eqeltrd 2840 |
. . . . . . 7
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∅ ∈ 𝐿) |
77 | 76 | rexlimdvaa 3215 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥) → ∅ ∈ 𝐿)) |
78 | 30, 77 | syl5bi 241 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ∅ ∈ 𝐿)) |
79 | 27, 78 | mtod 197 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ¬ ∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
80 | | df-nel 3051 |
. . . 4
⊢ (∅
∉ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ¬ ∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
81 | 79, 80 | sylibr 233 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∅ ∉ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
82 | 19 | elrnmpt 5868 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑥))) |
83 | 82 | elv 3439 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑥)) |
84 | | imaeq2 5968 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑢)) |
85 | 84 | eqeq2d 2750 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑟 = (◡𝐹 “ 𝑥) ↔ 𝑟 = (◡𝐹 “ 𝑢))) |
86 | 85 | cbvrexvw 3385 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐿 𝑟 = (◡𝐹 “ 𝑥) ↔ ∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢)) |
87 | 83, 86 | bitri 274 |
. . . . . . 7
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢)) |
88 | 19 | elrnmpt 5868 |
. . . . . . . . 9
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
89 | 88 | elv 3439 |
. . . . . . . 8
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
90 | | imaeq2 5968 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑣)) |
91 | 90 | eqeq2d 2750 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝑠 = (◡𝐹 “ 𝑥) ↔ 𝑠 = (◡𝐹 “ 𝑣))) |
92 | 91 | cbvrexvw 3385 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ↔ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣)) |
93 | 89, 92 | bitri 274 |
. . . . . . 7
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣)) |
94 | 87, 93 | anbi12i 627 |
. . . . . 6
⊢ ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣))) |
95 | | reeanv 3295 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) ↔ (∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣))) |
96 | 94, 95 | bitr4i 277 |
. . . . 5
⊢ ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑢 ∈ 𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣))) |
97 | | filin 23014 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
98 | 97 | 3expb 1119 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
99 | 98 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
100 | | eqidd 2740 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
101 | | imaeq2 5968 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑢 ∩ 𝑣) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
102 | 101 | rspceeqv 3576 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∩ 𝑣) ∈ 𝐿 ∧ (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣))) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
103 | 99, 100, 102 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
104 | 103 | 3adantl1 1165 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
105 | 104 | ad2ant2r 744 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
106 | | simpll1 1211 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑌 ∈ 𝐴) |
107 | | cnvimass 5992 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ dom 𝐹 |
108 | 107, 43 | sseqtrid 3974 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
109 | 108 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
110 | 109 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
111 | 106, 110 | ssexd 5249 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ V) |
112 | 19 | elrnmpt 5868 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ V → ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥))) |
113 | 111, 112 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥))) |
114 | 105, 113 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
115 | | simprrl 778 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑟 = (◡𝐹 “ 𝑢)) |
116 | | simprrr 779 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑠 = (◡𝐹 “ 𝑣)) |
117 | 115, 116 | ineq12d 4148 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (𝑟 ∩ 𝑠) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
118 | | funcnvcnv 6508 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
119 | | imain 6526 |
. . . . . . . . . . . . 13
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
120 | 40, 118, 119 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
121 | 120 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
122 | 121 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
123 | 117, 122 | eqtr4d 2782 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (𝑟 ∩ 𝑠) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
124 | | eqimss2 3979 |
. . . . . . . . 9
⊢ ((𝑟 ∩ 𝑠) = (◡𝐹 “ (𝑢 ∩ 𝑣)) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
125 | 123, 124 | syl 17 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
126 | | sseq1 3947 |
. . . . . . . . 9
⊢ (𝑡 = (◡𝐹 “ (𝑢 ∩ 𝑣)) → (𝑡 ⊆ (𝑟 ∩ 𝑠) ↔ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠))) |
127 | 126 | rspcev 3562 |
. . . . . . . 8
⊢ (((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
128 | 114, 125,
127 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
129 | 128 | exp32 421 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) → ((𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)))) |
130 | 129 | rexlimdvv 3223 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑢 ∈ 𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
131 | 96, 130 | syl5bi 241 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
132 | 131 | ralrimivv 3123 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
133 | 24, 81, 132 | 3jca 1127 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
134 | | isfbas2 22995 |
. . 3
⊢ (𝑌 ∈ 𝐴 → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))))) |
135 | 1, 134 | syl 17 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))))) |
136 | 8, 133, 135 | mpbir2and 710 |
1
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |