MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfmlem Structured version   Visualization version   GIF version

Theorem rnelfmlem 23872
Description: Lemma for rnelfm 23873. (Contributed by Jeff Hankins, 14-Nov-2009.)
Assertion
Ref Expression
rnelfmlem (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑋   𝑥,𝑌

Proof of Theorem rnelfmlem
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
2 cnvimass 6042 . . . . . . 7 (𝐹𝑥) ⊆ dom 𝐹
3 simpl3 1194 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
42, 3fssdm 6689 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ⊆ 𝑌)
51, 4sselpwd 5278 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
65adantr 480 . . . 4 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
76fmpttd 7069 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑥𝐿 ↦ (𝐹𝑥)):𝐿⟶𝒫 𝑌)
87frnd 6678 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
9 filtop 23775 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
1093ad2ant2 1134 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
1110adantr 480 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
12 fimacnv 6692 . . . . . . . . 9 (𝐹:𝑌𝑋 → (𝐹𝑋) = 𝑌)
1312eqcomd 2735 . . . . . . . 8 (𝐹:𝑌𝑋𝑌 = (𝐹𝑋))
14133ad2ant3 1135 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌 = (𝐹𝑋))
1514adantr 480 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 = (𝐹𝑋))
16 imaeq2 6016 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716rspceeqv 3608 . . . . . 6 ((𝑋𝐿𝑌 = (𝐹𝑋)) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
1811, 15, 17syl2anc 584 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
19 eqid 2729 . . . . . . . 8 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2019elrnmpt 5911 . . . . . . 7 (𝑌𝐴 → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
21203ad2ant1 1133 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2221adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2318, 22mpbird 257 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
2423ne0d 4301 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅)
25 0nelfil 23769 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
26253ad2ant2 1134 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → ¬ ∅ ∈ 𝐿)
2726adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ 𝐿)
28 0ex 5257 . . . . . . 7 ∅ ∈ V
2919elrnmpt 5911 . . . . . . 7 (∅ ∈ V → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥)))
3028, 29ax-mp 5 . . . . . 6 (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥))
31 ffn 6670 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
32 fvelrnb 6903 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
34333ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
3534ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
36 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
3736biimparc 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥 ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) ∈ 𝑥)
3837ad2ant2l 746 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐿𝑦𝑥) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
3938adantll 714 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
40 ffun 6673 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝑌𝑋 → Fun 𝐹)
41403ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
4241ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → Fun 𝐹)
43 fdm 6679 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
4443eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑌𝑋 → (𝑧 ∈ dom 𝐹𝑧𝑌))
4544biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑌𝑋𝑧𝑌) → 𝑧 ∈ dom 𝐹)
46453ad2antl3 1188 . . . . . . . . . . . . . . . . . . . . 21 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
4746adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
4847ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹)
49 fvimacnv 7007 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5042, 48, 49syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5139, 50mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ (𝐹𝑥))
52 n0i 4299 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐹𝑥) → ¬ (𝐹𝑥) = ∅)
53 eqcom 2736 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ∅ ↔ ∅ = (𝐹𝑥))
5452, 53sylnib 328 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐹𝑥) → ¬ ∅ = (𝐹𝑥))
5551, 54syl 17 . . . . . . . . . . . . . . . 16 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ¬ ∅ = (𝐹𝑥))
5655rexlimdvaa 3135 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → ¬ ∅ = (𝐹𝑥)))
5735, 56sylbid 240 . . . . . . . . . . . . . 14 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (𝐹𝑥)))
5857con2d 134 . . . . . . . . . . . . 13 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹))
5958expr 456 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑦𝑥 → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹)))
6059com23 86 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (∅ = (𝐹𝑥) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹)))
6160impr 454 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
6261alrimiv 1927 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
63 imnan 399 . . . . . . . . . . . 12 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦𝑥𝑦 ∈ ran 𝐹))
64 elin 3927 . . . . . . . . . . . 12 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
6563, 64xchbinxr 335 . . . . . . . . . . 11 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
6665albii 1819 . . . . . . . . . 10 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
67 eq0 4309 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
68 eqcom 2736 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹))
6966, 67, 683bitr2i 299 . . . . . . . . 9 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹))
7062, 69sylib 218 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ = (𝑥 ∩ ran 𝐹))
71 simpll2 1214 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝐿 ∈ (Fil‘𝑋))
72 simprl 770 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝑥𝐿)
73 simplr 768 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ran 𝐹𝐿)
74 filin 23774 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
7571, 72, 73, 74syl3anc 1373 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
7670, 75eqeltrd 2828 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ ∈ 𝐿)
7776rexlimdvaa 3135 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 ∅ = (𝐹𝑥) → ∅ ∈ 𝐿))
7830, 77biimtrid 242 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ∅ ∈ 𝐿))
7927, 78mtod 198 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
80 df-nel 3030 . . . 4 (∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
8179, 80sylibr 234 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)))
8219elrnmpt 5911 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥)))
8382elv 3449 . . . . . . . 8 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥))
84 imaeq2 6016 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
8584eqeq2d 2740 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑟 = (𝐹𝑥) ↔ 𝑟 = (𝐹𝑢)))
8685cbvrexvw 3214 . . . . . . . 8 (∃𝑥𝐿 𝑟 = (𝐹𝑥) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
8783, 86bitri 275 . . . . . . 7 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
8819elrnmpt 5911 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
8988elv 3449 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
90 imaeq2 6016 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
9190eqeq2d 2740 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑣)))
9291cbvrexvw 3214 . . . . . . . 8 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
9389, 92bitri 275 . . . . . . 7 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
9487, 93anbi12i 628 . . . . . 6 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
95 reeanv 3207 . . . . . 6 (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
9694, 95bitr4i 278 . . . . 5 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))
97 filin 23774 . . . . . . . . . . . . . 14 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢𝐿𝑣𝐿) → (𝑢𝑣) ∈ 𝐿)
98973expb 1120 . . . . . . . . . . . . 13 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
9998adantlr 715 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
100 eqidd 2730 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣)))
101 imaeq2 6016 . . . . . . . . . . . . 13 (𝑥 = (𝑢𝑣) → (𝐹𝑥) = (𝐹 “ (𝑢𝑣)))
102101rspceeqv 3608 . . . . . . . . . . . 12 (((𝑢𝑣) ∈ 𝐿 ∧ (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
10399, 100, 102syl2anc 584 . . . . . . . . . . 11 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
1041033adantl1 1167 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
105104ad2ant2r 747 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
106 simpll1 1213 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑌𝐴)
107 cnvimass 6042 . . . . . . . . . . . . . 14 (𝐹 “ (𝑢𝑣)) ⊆ dom 𝐹
108107, 43sseqtrid 3986 . . . . . . . . . . . . 13 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
1091083ad2ant3 1135 . . . . . . . . . . . 12 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
110109ad2antrr 726 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
111106, 110ssexd 5274 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ V)
11219elrnmpt 5911 . . . . . . . . . 10 ((𝐹 “ (𝑢𝑣)) ∈ V → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
113111, 112syl 17 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
114105, 113mpbird 257 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
115 simprrl 780 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑟 = (𝐹𝑢))
116 simprrr 781 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑠 = (𝐹𝑣))
117115, 116ineq12d 4180 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = ((𝐹𝑢) ∩ (𝐹𝑣)))
118 funcnvcnv 6567 . . . . . . . . . . . . 13 (Fun 𝐹 → Fun 𝐹)
119 imain 6585 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
12040, 118, 1193syl 18 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
1211203ad2ant3 1135 . . . . . . . . . . 11 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
122121ad2antrr 726 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
123117, 122eqtr4d 2767 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = (𝐹 “ (𝑢𝑣)))
124 eqimss2 4003 . . . . . . . . 9 ((𝑟𝑠) = (𝐹 “ (𝑢𝑣)) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
125123, 124syl 17 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
126 sseq1 3969 . . . . . . . . 9 (𝑡 = (𝐹 “ (𝑢𝑣)) → (𝑡 ⊆ (𝑟𝑠) ↔ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)))
127126rspcev 3585 . . . . . . . 8 (((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
128114, 125, 127syl2anc 584 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
129128exp32 420 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑢𝐿𝑣𝐿) → ((𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))))
130129rexlimdvv 3191 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
13196, 130biimtrid 242 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
132131ralrimivv 3176 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
13324, 81, 1323jca 1128 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
134 isfbas2 23755 . . 3 (𝑌𝐴 → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
1351, 134syl 17 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
1368, 133, 135mpbir2and 713 1 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  cmpt 5183  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  fBascfbas 21284  Filcfil 23765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-fbas 21293  df-fil 23766
This theorem is referenced by:  rnelfm  23873  fmfnfm  23878
  Copyright terms: Public domain W3C validator