MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfmlem Structured version   Visualization version   GIF version

Theorem rnelfmlem 22821
Description: Lemma for rnelfm 22822. (Contributed by Jeff Hankins, 14-Nov-2009.)
Assertion
Ref Expression
rnelfmlem (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑋   𝑥,𝑌

Proof of Theorem rnelfmlem
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1193 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
2 cnvimass 5938 . . . . . . 7 (𝐹𝑥) ⊆ dom 𝐹
3 simpl3 1195 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
42, 3fssdm 6554 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ⊆ 𝑌)
51, 4sselpwd 5208 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
65adantr 484 . . . 4 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
76fmpttd 6921 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑥𝐿 ↦ (𝐹𝑥)):𝐿⟶𝒫 𝑌)
87frnd 6542 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
9 filtop 22724 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
1093ad2ant2 1136 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
1110adantr 484 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
12 fimacnv 6556 . . . . . . . . 9 (𝐹:𝑌𝑋 → (𝐹𝑋) = 𝑌)
1312eqcomd 2740 . . . . . . . 8 (𝐹:𝑌𝑋𝑌 = (𝐹𝑋))
14133ad2ant3 1137 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌 = (𝐹𝑋))
1514adantr 484 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 = (𝐹𝑋))
16 imaeq2 5914 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716rspceeqv 3545 . . . . . 6 ((𝑋𝐿𝑌 = (𝐹𝑋)) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
1811, 15, 17syl2anc 587 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
19 eqid 2734 . . . . . . . 8 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2019elrnmpt 5814 . . . . . . 7 (𝑌𝐴 → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
21203ad2ant1 1135 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2221adantr 484 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2318, 22mpbird 260 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
2423ne0d 4240 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅)
25 0nelfil 22718 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
26253ad2ant2 1136 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → ¬ ∅ ∈ 𝐿)
2726adantr 484 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ 𝐿)
28 0ex 5189 . . . . . . 7 ∅ ∈ V
2919elrnmpt 5814 . . . . . . 7 (∅ ∈ V → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥)))
3028, 29ax-mp 5 . . . . . 6 (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥))
31 ffn 6534 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
32 fvelrnb 6762 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
34333ad2ant3 1137 . . . . . . . . . . . . . . . 16 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
3534ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
36 eleq1 2821 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
3736biimparc 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥 ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) ∈ 𝑥)
3837ad2ant2l 746 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐿𝑦𝑥) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
3938adantll 714 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
40 ffun 6537 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝑌𝑋 → Fun 𝐹)
41403ad2ant3 1137 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
4241ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → Fun 𝐹)
43 fdm 6543 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
4443eleq2d 2819 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑌𝑋 → (𝑧 ∈ dom 𝐹𝑧𝑌))
4544biimpar 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑌𝑋𝑧𝑌) → 𝑧 ∈ dom 𝐹)
46453ad2antl3 1189 . . . . . . . . . . . . . . . . . . . . 21 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
4746adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
4847ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹)
49 fvimacnv 6862 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5042, 48, 49syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5139, 50mpbid 235 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ (𝐹𝑥))
52 n0i 4238 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐹𝑥) → ¬ (𝐹𝑥) = ∅)
53 eqcom 2741 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ∅ ↔ ∅ = (𝐹𝑥))
5452, 53sylnib 331 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐹𝑥) → ¬ ∅ = (𝐹𝑥))
5551, 54syl 17 . . . . . . . . . . . . . . . 16 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ¬ ∅ = (𝐹𝑥))
5655rexlimdvaa 3197 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → ¬ ∅ = (𝐹𝑥)))
5735, 56sylbid 243 . . . . . . . . . . . . . 14 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (𝐹𝑥)))
5857con2d 136 . . . . . . . . . . . . 13 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹))
5958expr 460 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑦𝑥 → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹)))
6059com23 86 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (∅ = (𝐹𝑥) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹)))
6160impr 458 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
6261alrimiv 1935 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
63 imnan 403 . . . . . . . . . . . 12 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦𝑥𝑦 ∈ ran 𝐹))
64 elin 3873 . . . . . . . . . . . 12 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
6563, 64xchbinxr 338 . . . . . . . . . . 11 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
6665albii 1827 . . . . . . . . . 10 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
67 eq0 4248 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
68 eqcom 2741 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹))
6966, 67, 683bitr2i 302 . . . . . . . . 9 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹))
7062, 69sylib 221 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ = (𝑥 ∩ ran 𝐹))
71 simpll2 1215 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝐿 ∈ (Fil‘𝑋))
72 simprl 771 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝑥𝐿)
73 simplr 769 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ran 𝐹𝐿)
74 filin 22723 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
7571, 72, 73, 74syl3anc 1373 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
7670, 75eqeltrd 2834 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ ∈ 𝐿)
7776rexlimdvaa 3197 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 ∅ = (𝐹𝑥) → ∅ ∈ 𝐿))
7830, 77syl5bi 245 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ∅ ∈ 𝐿))
7927, 78mtod 201 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
80 df-nel 3040 . . . 4 (∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
8179, 80sylibr 237 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)))
8219elrnmpt 5814 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥)))
8382elv 3407 . . . . . . . 8 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥))
84 imaeq2 5914 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
8584eqeq2d 2745 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑟 = (𝐹𝑥) ↔ 𝑟 = (𝐹𝑢)))
8685cbvrexvw 3352 . . . . . . . 8 (∃𝑥𝐿 𝑟 = (𝐹𝑥) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
8783, 86bitri 278 . . . . . . 7 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
8819elrnmpt 5814 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
8988elv 3407 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
90 imaeq2 5914 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
9190eqeq2d 2745 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑣)))
9291cbvrexvw 3352 . . . . . . . 8 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
9389, 92bitri 278 . . . . . . 7 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
9487, 93anbi12i 630 . . . . . 6 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
95 reeanv 3272 . . . . . 6 (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
9694, 95bitr4i 281 . . . . 5 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))
97 filin 22723 . . . . . . . . . . . . . 14 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢𝐿𝑣𝐿) → (𝑢𝑣) ∈ 𝐿)
98973expb 1122 . . . . . . . . . . . . 13 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
9998adantlr 715 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
100 eqidd 2735 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣)))
101 imaeq2 5914 . . . . . . . . . . . . 13 (𝑥 = (𝑢𝑣) → (𝐹𝑥) = (𝐹 “ (𝑢𝑣)))
102101rspceeqv 3545 . . . . . . . . . . . 12 (((𝑢𝑣) ∈ 𝐿 ∧ (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
10399, 100, 102syl2anc 587 . . . . . . . . . . 11 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
1041033adantl1 1168 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
105104ad2ant2r 747 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
106 simpll1 1214 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑌𝐴)
107 cnvimass 5938 . . . . . . . . . . . . . 14 (𝐹 “ (𝑢𝑣)) ⊆ dom 𝐹
108107, 43sseqtrid 3943 . . . . . . . . . . . . 13 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
1091083ad2ant3 1137 . . . . . . . . . . . 12 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
110109ad2antrr 726 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
111106, 110ssexd 5206 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ V)
11219elrnmpt 5814 . . . . . . . . . 10 ((𝐹 “ (𝑢𝑣)) ∈ V → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
113111, 112syl 17 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
114105, 113mpbird 260 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
115 simprrl 781 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑟 = (𝐹𝑢))
116 simprrr 782 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑠 = (𝐹𝑣))
117115, 116ineq12d 4118 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = ((𝐹𝑢) ∩ (𝐹𝑣)))
118 funcnvcnv 6436 . . . . . . . . . . . . 13 (Fun 𝐹 → Fun 𝐹)
119 imain 6454 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
12040, 118, 1193syl 18 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
1211203ad2ant3 1137 . . . . . . . . . . 11 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
122121ad2antrr 726 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
123117, 122eqtr4d 2777 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = (𝐹 “ (𝑢𝑣)))
124 eqimss2 3948 . . . . . . . . 9 ((𝑟𝑠) = (𝐹 “ (𝑢𝑣)) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
125123, 124syl 17 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
126 sseq1 3916 . . . . . . . . 9 (𝑡 = (𝐹 “ (𝑢𝑣)) → (𝑡 ⊆ (𝑟𝑠) ↔ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)))
127126rspcev 3530 . . . . . . . 8 (((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
128114, 125, 127syl2anc 587 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
129128exp32 424 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑢𝐿𝑣𝐿) → ((𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))))
130129rexlimdvv 3205 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
13196, 130syl5bi 245 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
132131ralrimivv 3104 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
13324, 81, 1323jca 1130 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
134 isfbas2 22704 . . 3 (𝑌𝐴 → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
1351, 134syl 17 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
1368, 133, 135mpbir2and 713 1 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wcel 2110  wne 2935  wnel 3039  wral 3054  wrex 3055  Vcvv 3401  cin 3856  wss 3857  c0 4227  𝒫 cpw 4503  cmpt 5124  ccnv 5539  dom cdm 5540  ran crn 5541  cima 5543  Fun wfun 6363   Fn wfn 6364  wf 6365  cfv 6369  fBascfbas 20323  Filcfil 22714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-fv 6377  df-fbas 20332  df-fil 22715
This theorem is referenced by:  rnelfm  22822  fmfnfm  22827
  Copyright terms: Public domain W3C validator