| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ 𝐴) |
| 2 | | cnvimass 6069 |
. . . . . . 7
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
| 3 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐹:𝑌⟶𝑋) |
| 4 | 2, 3 | fssdm 6725 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑥) ⊆ 𝑌) |
| 5 | 1, 4 | sselpwd 5298 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
| 7 | 6 | fmpttd 7105 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)):𝐿⟶𝒫 𝑌) |
| 8 | 7 | frnd 6714 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
| 9 | | filtop 23793 |
. . . . . . . 8
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
| 10 | 9 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ 𝐿) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑋 ∈ 𝐿) |
| 12 | | fimacnv 6728 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ 𝑋) = 𝑌) |
| 13 | 12 | eqcomd 2741 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → 𝑌 = (◡𝐹 “ 𝑋)) |
| 14 | 13 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑌 = (◡𝐹 “ 𝑋)) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 = (◡𝐹 “ 𝑋)) |
| 16 | | imaeq2 6043 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑋)) |
| 17 | 16 | rspceeqv 3624 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝑌 = (◡𝐹 “ 𝑋)) → ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥)) |
| 18 | 11, 15, 17 | syl2anc 584 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥)) |
| 19 | | eqid 2735 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
| 20 | 19 | elrnmpt 5938 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐴 → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
| 23 | 18, 22 | mpbird 257 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 24 | 23 | ne0d 4317 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅) |
| 25 | | 0nelfil 23787 |
. . . . . . 7
⊢ (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐿) |
| 26 | 25 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → ¬ ∅ ∈ 𝐿) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ¬ ∅ ∈ 𝐿) |
| 28 | | 0ex 5277 |
. . . . . . 7
⊢ ∅
∈ V |
| 29 | 19 | elrnmpt 5938 |
. . . . . . 7
⊢ (∅
∈ V → (∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥))) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥)) |
| 31 | | ffn 6706 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
| 32 | | fvelrnb 6939 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑌⟶𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 34 | 33 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 36 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑧) = 𝑦 → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 37 | 36 | biimparc 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) ∈ 𝑥) |
| 38 | 37 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → (𝐹‘𝑧) ∈ 𝑥) |
| 39 | 38 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → (𝐹‘𝑧) ∈ 𝑥) |
| 40 | | ffun 6709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
| 41 | 40 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → Fun 𝐹) |
| 42 | 41 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → Fun 𝐹) |
| 43 | | fdm 6715 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
| 44 | 43 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝑌⟶𝑋 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝑌)) |
| 45 | 44 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
| 46 | 45 | 3ad2antl3 1188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
| 47 | 46 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
| 48 | 47 | ad2ant2r 747 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹) |
| 49 | | fvimacnv 7043 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑧 ∈ (◡𝐹 “ 𝑥))) |
| 50 | 42, 48, 49 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑧 ∈ (◡𝐹 “ 𝑥))) |
| 51 | 39, 50 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ (◡𝐹 “ 𝑥)) |
| 52 | | n0i 4315 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (◡𝐹 “ 𝑥) → ¬ (◡𝐹 “ 𝑥) = ∅) |
| 53 | | eqcom 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹 “ 𝑥) = ∅ ↔ ∅ = (◡𝐹 “ 𝑥)) |
| 54 | 52, 53 | sylnib 328 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (◡𝐹 “ 𝑥) → ¬ ∅ = (◡𝐹 “ 𝑥)) |
| 55 | 51, 54 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → ¬ ∅ = (◡𝐹 “ 𝑥)) |
| 56 | 55 | rexlimdvaa 3142 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦 → ¬ ∅ = (◡𝐹 “ 𝑥))) |
| 57 | 35, 56 | sylbid 240 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (◡𝐹 “ 𝑥))) |
| 58 | 57 | con2d 134 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (∅ = (◡𝐹 “ 𝑥) → ¬ 𝑦 ∈ ran 𝐹)) |
| 59 | 58 | expr 456 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑦 ∈ 𝑥 → (∅ = (◡𝐹 “ 𝑥) → ¬ 𝑦 ∈ ran 𝐹))) |
| 60 | 59 | com23 86 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (∅ = (◡𝐹 “ 𝑥) → (𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹))) |
| 61 | 60 | impr 454 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → (𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹)) |
| 62 | 61 | alrimiv 1927 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹)) |
| 63 | | imnan 399 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹)) |
| 64 | | elin 3942 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹)) |
| 65 | 63, 64 | xchbinxr 335 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
| 66 | 65 | albii 1819 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
| 67 | | eq0 4325 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
| 68 | | eqcom 2742 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹)) |
| 69 | 66, 67, 68 | 3bitr2i 299 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹)) |
| 70 | 62, 69 | sylib 218 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∅ = (𝑥 ∩ ran 𝐹)) |
| 71 | | simpll2 1214 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → 𝐿 ∈ (Fil‘𝑋)) |
| 72 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → 𝑥 ∈ 𝐿) |
| 73 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ran 𝐹 ∈ 𝐿) |
| 74 | | filin 23792 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 75 | 71, 72, 73, 74 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 76 | 70, 75 | eqeltrd 2834 |
. . . . . . 7
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∅ ∈ 𝐿) |
| 77 | 76 | rexlimdvaa 3142 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥) → ∅ ∈ 𝐿)) |
| 78 | 30, 77 | biimtrid 242 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ∅ ∈ 𝐿)) |
| 79 | 27, 78 | mtod 198 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ¬ ∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 80 | | df-nel 3037 |
. . . 4
⊢ (∅
∉ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ¬ ∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 81 | 79, 80 | sylibr 234 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∅ ∉ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 82 | 19 | elrnmpt 5938 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑥))) |
| 83 | 82 | elv 3464 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑥)) |
| 84 | | imaeq2 6043 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑢)) |
| 85 | 84 | eqeq2d 2746 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑟 = (◡𝐹 “ 𝑥) ↔ 𝑟 = (◡𝐹 “ 𝑢))) |
| 86 | 85 | cbvrexvw 3221 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐿 𝑟 = (◡𝐹 “ 𝑥) ↔ ∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢)) |
| 87 | 83, 86 | bitri 275 |
. . . . . . 7
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢)) |
| 88 | 19 | elrnmpt 5938 |
. . . . . . . . 9
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
| 89 | 88 | elv 3464 |
. . . . . . . 8
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
| 90 | | imaeq2 6043 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑣)) |
| 91 | 90 | eqeq2d 2746 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝑠 = (◡𝐹 “ 𝑥) ↔ 𝑠 = (◡𝐹 “ 𝑣))) |
| 92 | 91 | cbvrexvw 3221 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ↔ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣)) |
| 93 | 89, 92 | bitri 275 |
. . . . . . 7
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣)) |
| 94 | 87, 93 | anbi12i 628 |
. . . . . 6
⊢ ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣))) |
| 95 | | reeanv 3213 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) ↔ (∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣))) |
| 96 | 94, 95 | bitr4i 278 |
. . . . 5
⊢ ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑢 ∈ 𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣))) |
| 97 | | filin 23792 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
| 98 | 97 | 3expb 1120 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
| 99 | 98 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
| 100 | | eqidd 2736 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
| 101 | | imaeq2 6043 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑢 ∩ 𝑣) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
| 102 | 101 | rspceeqv 3624 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∩ 𝑣) ∈ 𝐿 ∧ (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣))) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 103 | 99, 100, 102 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 104 | 103 | 3adantl1 1167 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 105 | 104 | ad2ant2r 747 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 106 | | simpll1 1213 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑌 ∈ 𝐴) |
| 107 | | cnvimass 6069 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ dom 𝐹 |
| 108 | 107, 43 | sseqtrid 4001 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
| 109 | 108 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
| 110 | 109 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
| 111 | 106, 110 | ssexd 5294 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ V) |
| 112 | 19 | elrnmpt 5938 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ V → ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥))) |
| 113 | 111, 112 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥))) |
| 114 | 105, 113 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 115 | | simprrl 780 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑟 = (◡𝐹 “ 𝑢)) |
| 116 | | simprrr 781 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑠 = (◡𝐹 “ 𝑣)) |
| 117 | 115, 116 | ineq12d 4196 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (𝑟 ∩ 𝑠) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 118 | | funcnvcnv 6603 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
| 119 | | imain 6621 |
. . . . . . . . . . . . 13
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 120 | 40, 118, 119 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 121 | 120 | 3ad2ant3 1135 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 122 | 121 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 123 | 117, 122 | eqtr4d 2773 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (𝑟 ∩ 𝑠) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
| 124 | | eqimss2 4018 |
. . . . . . . . 9
⊢ ((𝑟 ∩ 𝑠) = (◡𝐹 “ (𝑢 ∩ 𝑣)) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
| 125 | 123, 124 | syl 17 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
| 126 | | sseq1 3984 |
. . . . . . . . 9
⊢ (𝑡 = (◡𝐹 “ (𝑢 ∩ 𝑣)) → (𝑡 ⊆ (𝑟 ∩ 𝑠) ↔ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠))) |
| 127 | 126 | rspcev 3601 |
. . . . . . . 8
⊢ (((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
| 128 | 114, 125,
127 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
| 129 | 128 | exp32 420 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) → ((𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)))) |
| 130 | 129 | rexlimdvv 3197 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑢 ∈ 𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
| 131 | 96, 130 | biimtrid 242 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
| 132 | 131 | ralrimivv 3185 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
| 133 | 24, 81, 132 | 3jca 1128 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
| 134 | | isfbas2 23773 |
. . 3
⊢ (𝑌 ∈ 𝐴 → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))))) |
| 135 | 1, 134 | syl 17 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))))) |
| 136 | 8, 133, 135 | mpbir2and 713 |
1
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |