MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshw Structured version   Visualization version   GIF version

Theorem 2cshw 14166
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.)
Assertion
Ref Expression
2cshw ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))

Proof of Theorem 2cshw
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 cshwlen 14152 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
213adant3 1129 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
3 cshwcl 14151 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
4 cshwlen 14152 . . . . 5 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
53, 4sylan 583 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
653adant2 1128 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
7 simp1 1133 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
8 zaddcl 12010 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
983adant1 1127 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
10 cshwlen 14152 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
117, 9, 10syl2anc 587 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
122, 6, 113eqtr4d 2843 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))))
136, 2eqtrd 2833 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘𝑊))
1413oveq2d 7151 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) = (0..^(♯‘𝑊)))
1514eleq2d 2875 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
1633ad2ant1 1130 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
1716adantr 484 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
18 simpl3 1190 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
192oveq2d 7151 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘(𝑊 cyclShift 𝑀))) = (0..^(♯‘𝑊)))
2019eleq2d 2875 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
2120biimpar 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))))
22 cshwidxmod 14156 . . . . . . 7 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀)))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
2317, 18, 21, 22syl3anc 1368 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
24 simpl1 1188 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
25 simpl2 1189 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑀 ∈ ℤ)
26 elfzo0 13073 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
27 nn0z 11993 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
2827ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℤ)
29 simpr3 1193 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
3028, 29zaddcld 12079 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℤ)
31 simplr 768 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
3230, 31jca 515 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3332ex 416 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
34333adant3 1129 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3526, 34sylbi 220 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3635impcom 411 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
37 zmodfzo 13257 . . . . . . . . 9 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3836, 37syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
391oveq2d 7151 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
4039eleq1d 2874 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
41403adant3 1129 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4241adantr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4338, 42mpbird 260 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)))
44 cshwidxmod 14156 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
4524, 25, 43, 44syl3anc 1368 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
46 nn0re 11894 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4746ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℝ)
48 zre 11973 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4948ad2antll 728 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
5047, 49readdcld 10659 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℝ)
51 zre 11973 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5251ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
53 nnrp 12388 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
5453ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
55 modaddmod 13273 . . . . . . . . . . . . . . 15 (((𝑖 + 𝑁) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
5650, 52, 54, 55syl3anc 1368 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
57 nn0cn 11895 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
5857ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℂ)
59 zcn 11974 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6059ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
61 zcn 11974 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6261ad2antll 728 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
63 add32r 10848 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6458, 60, 62, 63syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6564oveq1d 7150 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
6656, 65eqtr4d 2836 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
6766ex 416 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
68673adant3 1129 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
6926, 68sylbi 220 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7069impcom 411 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
71703adantl1 1163 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7271fveq2d 6649 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
732adantr 484 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
7473oveq2d 7151 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
7574oveq1d 7150 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) = (((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀))
7675fvoveq1d 7157 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))))
779adantr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑀 + 𝑁) ∈ ℤ)
78 simpr 488 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
79 cshwidxmod 14156 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8024, 77, 78, 79syl3anc 1368 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8172, 76, 803eqtr4d 2843 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8223, 45, 813eqtrd 2837 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8382ex 416 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8415, 83sylbid 243 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8584ralrimiv 3148 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
86 cshwcl 14151 . . . . 5 ((𝑊 cyclShift 𝑀) ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
873, 86syl 17 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
88 cshwcl 14151 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉)
89 eqwrd 13900 . . . 4 ((((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9087, 88, 89syl2anc 587 . . 3 (𝑊 ∈ Word 𝑉 → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
91903ad2ant1 1130 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9212, 85, 91mpbir2and 712 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cn 11625  0cn0 11885  cz 11969  +crp 12377  ..^cfzo 13028   mod cmo 13232  chash 13686  Word cword 13857   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142
This theorem is referenced by:  2cshwid  14167  2cshwcom  14169  cshweqdif2  14172  2cshwcshw  14178  cshwcshid  14180  cshwcsh2id  14181  cshwshashlem2  16422
  Copyright terms: Public domain W3C validator