MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshw Structured version   Visualization version   GIF version

Theorem 2cshw 14778
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.)
Assertion
Ref Expression
2cshw ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))

Proof of Theorem 2cshw
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 cshwlen 14764 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
213adant3 1132 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
3 cshwcl 14763 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
4 cshwlen 14764 . . . . 5 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
53, 4sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
653adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
7 simp1 1136 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
8 zaddcl 12573 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
983adant1 1130 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
10 cshwlen 14764 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
117, 9, 10syl2anc 584 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
122, 6, 113eqtr4d 2774 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))))
136, 2eqtrd 2764 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘𝑊))
1413oveq2d 7403 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) = (0..^(♯‘𝑊)))
1514eleq2d 2814 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
1633ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
1716adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
18 simpl3 1194 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
192oveq2d 7403 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘(𝑊 cyclShift 𝑀))) = (0..^(♯‘𝑊)))
2019eleq2d 2814 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
2120biimpar 477 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))))
22 cshwidxmod 14768 . . . . . . 7 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀)))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
2317, 18, 21, 22syl3anc 1373 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
24 simpl1 1192 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
25 simpl2 1193 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑀 ∈ ℤ)
26 elfzo0 13661 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
27 nn0z 12554 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
2827ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℤ)
29 simpr3 1197 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
3028, 29zaddcld 12642 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℤ)
31 simplr 768 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
3230, 31jca 511 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3332ex 412 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
34333adant3 1132 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3526, 34sylbi 217 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3635impcom 407 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
37 zmodfzo 13856 . . . . . . . . 9 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3836, 37syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
391oveq2d 7403 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
4039eleq1d 2813 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
41403adant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4241adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4338, 42mpbird 257 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)))
44 cshwidxmod 14768 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
4524, 25, 43, 44syl3anc 1373 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
46 nn0re 12451 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4746ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℝ)
48 zre 12533 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4948ad2antll 729 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
5047, 49readdcld 11203 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℝ)
51 zre 12533 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5251ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
53 nnrp 12963 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
5453ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
55 modaddmod 13874 . . . . . . . . . . . . . . 15 (((𝑖 + 𝑁) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
5650, 52, 54, 55syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
57 nn0cn 12452 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
5857ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℂ)
59 zcn 12534 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6059ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
61 zcn 12534 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6261ad2antll 729 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
63 add32r 11394 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6458, 60, 62, 63syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6564oveq1d 7402 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
6656, 65eqtr4d 2767 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
6766ex 412 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
68673adant3 1132 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
6926, 68sylbi 217 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7069impcom 407 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
71703adantl1 1167 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7271fveq2d 6862 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
732adantr 480 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
7473oveq2d 7403 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
7574oveq1d 7402 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) = (((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀))
7675fvoveq1d 7409 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))))
779adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑀 + 𝑁) ∈ ℤ)
78 simpr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
79 cshwidxmod 14768 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8024, 77, 78, 79syl3anc 1373 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8172, 76, 803eqtr4d 2774 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8223, 45, 813eqtrd 2768 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8382ex 412 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8415, 83sylbid 240 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8584ralrimiv 3124 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
86 cshwcl 14763 . . . . 5 ((𝑊 cyclShift 𝑀) ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
873, 86syl 17 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
88 cshwcl 14763 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉)
89 eqwrd 14522 . . . 4 ((((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9087, 88, 89syl2anc 584 . . 3 (𝑊 ∈ Word 𝑉 → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
91903ad2ant1 1133 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9212, 85, 91mpbir2and 713 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   < clt 11208  cn 12186  0cn0 12442  cz 12529  +crp 12951  ..^cfzo 13615   mod cmo 13831  chash 14295  Word cword 14478   cyclShift ccsh 14753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-csh 14754
This theorem is referenced by:  2cshwid  14779  2cshwcom  14781  cshweqdif2  14784  2cshwcshw  14791  cshwcshid  14793  cshwcsh2id  14794  cshwshashlem2  17067
  Copyright terms: Public domain W3C validator