MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshw Structured version   Visualization version   GIF version

Theorem 2cshw 14861
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.)
Assertion
Ref Expression
2cshw ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))

Proof of Theorem 2cshw
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 cshwlen 14847 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
213adant3 1132 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
3 cshwcl 14846 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
4 cshwlen 14847 . . . . 5 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
53, 4sylan 579 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
653adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
7 simp1 1136 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
8 zaddcl 12683 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
983adant1 1130 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
10 cshwlen 14847 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
117, 9, 10syl2anc 583 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
122, 6, 113eqtr4d 2790 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))))
136, 2eqtrd 2780 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘𝑊))
1413oveq2d 7464 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) = (0..^(♯‘𝑊)))
1514eleq2d 2830 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
1633ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
1716adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
18 simpl3 1193 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
192oveq2d 7464 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘(𝑊 cyclShift 𝑀))) = (0..^(♯‘𝑊)))
2019eleq2d 2830 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
2120biimpar 477 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))))
22 cshwidxmod 14851 . . . . . . 7 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀)))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
2317, 18, 21, 22syl3anc 1371 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
24 simpl1 1191 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
25 simpl2 1192 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑀 ∈ ℤ)
26 elfzo0 13757 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
27 nn0z 12664 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
2827ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℤ)
29 simpr3 1196 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
3028, 29zaddcld 12751 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℤ)
31 simplr 768 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
3230, 31jca 511 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3332ex 412 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
34333adant3 1132 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3526, 34sylbi 217 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
3635impcom 407 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
37 zmodfzo 13945 . . . . . . . . 9 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3836, 37syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
391oveq2d 7464 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
4039eleq1d 2829 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
41403adant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4241adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4338, 42mpbird 257 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)))
44 cshwidxmod 14851 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
4524, 25, 43, 44syl3anc 1371 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
46 nn0re 12562 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4746ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℝ)
48 zre 12643 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4948ad2antll 728 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
5047, 49readdcld 11319 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℝ)
51 zre 12643 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5251ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
53 nnrp 13068 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
5453ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
55 modaddmod 13961 . . . . . . . . . . . . . . 15 (((𝑖 + 𝑁) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
5650, 52, 54, 55syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
57 nn0cn 12563 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
5857ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℂ)
59 zcn 12644 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6059ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
61 zcn 12644 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6261ad2antll 728 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
63 add32r 11509 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6458, 60, 62, 63syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6564oveq1d 7463 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
6656, 65eqtr4d 2783 . . . . . . . . . . . . 13 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
6766ex 412 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
68673adant3 1132 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
6926, 68sylbi 217 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7069impcom 407 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
71703adantl1 1166 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7271fveq2d 6924 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
732adantr 480 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
7473oveq2d 7464 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
7574oveq1d 7463 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) = (((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀))
7675fvoveq1d 7470 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))))
779adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑀 + 𝑁) ∈ ℤ)
78 simpr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
79 cshwidxmod 14851 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8024, 77, 78, 79syl3anc 1371 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8172, 76, 803eqtr4d 2790 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8223, 45, 813eqtrd 2784 . . . . 5 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
8382ex 412 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8415, 83sylbid 240 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
8584ralrimiv 3151 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
86 cshwcl 14846 . . . . 5 ((𝑊 cyclShift 𝑀) ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
873, 86syl 17 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
88 cshwcl 14846 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉)
89 eqwrd 14605 . . . 4 ((((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9087, 88, 89syl2anc 583 . . 3 (𝑊 ∈ Word 𝑉 → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
91903ad2ant1 1133 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
9212, 85, 91mpbir2and 712 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   + caddc 11187   < clt 11324  cn 12293  0cn0 12553  cz 12639  +crp 13057  ..^cfzo 13711   mod cmo 13920  chash 14379  Word cword 14562   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  2cshwid  14862  2cshwcom  14864  cshweqdif2  14867  2cshwcshw  14874  cshwcshid  14876  cshwcsh2id  14877  cshwshashlem2  17144
  Copyright terms: Public domain W3C validator