| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmledvds | Structured version Visualization version GIF version | ||
| Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmledvds | ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0val 16565 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) | |
| 2 | 1 | 3adantl1 1167 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 4 | breq2 5111 | . . . . . . . . . 10 ⊢ (𝑛 = 𝐾 → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾)) | |
| 5 | breq2 5111 | . . . . . . . . . 10 ⊢ (𝑛 = 𝐾 → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾))) |
| 7 | 6 | elrab 3659 | . . . . . . . 8 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾))) |
| 8 | ssrab2 4043 | . . . . . . . . . 10 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ ℕ | |
| 9 | nnuz 12836 | . . . . . . . . . 10 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 8, 9 | sseqtri 3995 | . . . . . . . . 9 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ (ℤ≥‘1) |
| 11 | infssuzle 12890 | . . . . . . . . 9 ⊢ (({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ (ℤ≥‘1) ∧ 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) | |
| 12 | 10, 11 | mpan 690 | . . . . . . . 8 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
| 13 | 7, 12 | sylbir 235 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
| 14 | 13 | ex 412 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾)) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾)) |
| 17 | 16 | imp 406 | . . 3 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
| 18 | 3, 17 | eqbrtrd 5129 | . 2 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) ≤ 𝐾) |
| 19 | 18 | ex 412 | 1 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 infcinf 9392 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ∥ cdvds 16222 lcm clcm 16558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-lcm 16560 |
| This theorem is referenced by: lcmneg 16573 lcmftp 16606 lcmfunsnlem2lem1 16608 |
| Copyright terms: Public domain | W3C validator |