MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmledvds Structured version   Visualization version   GIF version

Theorem lcmledvds 16304
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmledvds (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾))

Proof of Theorem lcmledvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lcmn0val 16300 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
213adantl1 1165 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
32adantr 481 . . 3 ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
4 breq2 5078 . . . . . . . . . 10 (𝑛 = 𝐾 → (𝑀𝑛𝑀𝐾))
5 breq2 5078 . . . . . . . . . 10 (𝑛 = 𝐾 → (𝑁𝑛𝑁𝐾))
64, 5anbi12d 631 . . . . . . . . 9 (𝑛 = 𝐾 → ((𝑀𝑛𝑁𝑛) ↔ (𝑀𝐾𝑁𝐾)))
76elrab 3624 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)))
8 ssrab2 4013 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ ℕ
9 nnuz 12621 . . . . . . . . . 10 ℕ = (ℤ‘1)
108, 9sseqtri 3957 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1)
11 infssuzle 12671 . . . . . . . . 9 (({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1) ∧ 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
1210, 11mpan 687 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
137, 12sylbir 234 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
1413ex 413 . . . . . 6 (𝐾 ∈ ℕ → ((𝑀𝐾𝑁𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾))
15143ad2ant1 1132 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾))
1615adantr 481 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾))
1716imp 407 . . 3 ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀𝐾𝑁𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
183, 17eqbrtrd 5096 . 2 ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ≤ 𝐾)
1918ex 413 1 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cn 11973  cz 12319  cuz 12582  cdvds 15963   lcm clcm 16293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-lcm 16295
This theorem is referenced by:  lcmneg  16308  lcmftp  16341  lcmfunsnlem2lem1  16343
  Copyright terms: Public domain W3C validator