MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmledvds Structured version   Visualization version   GIF version

Theorem lcmledvds 16232
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmledvds (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾))

Proof of Theorem lcmledvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lcmn0val 16228 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
213adantl1 1164 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
32adantr 480 . . 3 ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
4 breq2 5074 . . . . . . . . . 10 (𝑛 = 𝐾 → (𝑀𝑛𝑀𝐾))
5 breq2 5074 . . . . . . . . . 10 (𝑛 = 𝐾 → (𝑁𝑛𝑁𝐾))
64, 5anbi12d 630 . . . . . . . . 9 (𝑛 = 𝐾 → ((𝑀𝑛𝑁𝑛) ↔ (𝑀𝐾𝑁𝐾)))
76elrab 3617 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)))
8 ssrab2 4009 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ ℕ
9 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
108, 9sseqtri 3953 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1)
11 infssuzle 12600 . . . . . . . . 9 (({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1) ∧ 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
1210, 11mpan 686 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
137, 12sylbir 234 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
1413ex 412 . . . . . 6 (𝐾 ∈ ℕ → ((𝑀𝐾𝑁𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾))
15143ad2ant1 1131 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾))
1615adantr 480 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾))
1716imp 406 . . 3 ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀𝐾𝑁𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ≤ 𝐾)
183, 17eqbrtrd 5092 . 2 ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ≤ 𝐾)
1918ex 412 1 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941  cn 11903  cz 12249  cuz 12511  cdvds 15891   lcm clcm 16221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-lcm 16223
This theorem is referenced by:  lcmneg  16236  lcmftp  16269  lcmfunsnlem2lem1  16271
  Copyright terms: Public domain W3C validator