![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmledvds | Structured version Visualization version GIF version |
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmledvds | ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmn0val 16635 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) | |
2 | 1 | 3adantl1 1166 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
3 | 2 | adantr 480 | . . 3 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
4 | breq2 5153 | . . . . . . . . . 10 ⊢ (𝑛 = 𝐾 → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾)) | |
5 | breq2 5153 | . . . . . . . . . 10 ⊢ (𝑛 = 𝐾 → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾)) | |
6 | 4, 5 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾))) |
7 | 6 | elrab 3696 | . . . . . . . 8 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾))) |
8 | ssrab2 4091 | . . . . . . . . . 10 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ ℕ | |
9 | nnuz 12925 | . . . . . . . . . 10 ⊢ ℕ = (ℤ≥‘1) | |
10 | 8, 9 | sseqtri 4033 | . . . . . . . . 9 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ (ℤ≥‘1) |
11 | infssuzle 12977 | . . . . . . . . 9 ⊢ (({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ (ℤ≥‘1) ∧ 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) | |
12 | 10, 11 | mpan 690 | . . . . . . . 8 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
13 | 7, 12 | sylbir 235 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
14 | 13 | ex 412 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾)) |
15 | 14 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾)) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾)) |
17 | 16 | imp 406 | . . 3 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
18 | 3, 17 | eqbrtrd 5171 | . 2 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) ≤ 𝐾) |
19 | 18 | ex 412 | 1 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 {crab 3434 ⊆ wss 3964 class class class wbr 5149 ‘cfv 6566 (class class class)co 7435 infcinf 9485 ℝcr 11158 0cc0 11159 1c1 11160 < clt 11299 ≤ cle 11300 ℕcn 12270 ℤcz 12617 ℤ≥cuz 12882 ∥ cdvds 16293 lcm clcm 16628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-n0 12531 df-z 12618 df-uz 12883 df-lcm 16630 |
This theorem is referenced by: lcmneg 16643 lcmftp 16676 lcmfunsnlem2lem1 16678 |
Copyright terms: Public domain | W3C validator |