![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioojoin | Structured version Visualization version GIF version |
Description: Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
ioojoin | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4195 | . 2 ⊢ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = ((𝐴(,)𝐵) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) | |
2 | snunioo 13538 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶)) | |
3 | 2 | 3expa 1118 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐵 < 𝐶) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶)) |
4 | 3 | 3adantl1 1166 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐵 < 𝐶) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶)) |
5 | 4 | adantrl 715 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ({𝐵} ∪ (𝐵(,)𝐶)) = (𝐵[,)𝐶)) |
6 | 5 | uneq2d 4191 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶))) |
7 | df-ioo 13411 | . . . 4 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
8 | df-ico 13413 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | xrlenlt 11355 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
10 | xrlttr 13202 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 < 𝐶) → 𝑤 < 𝐶)) | |
11 | xrltletr 13219 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝑤) → 𝐴 < 𝑤)) | |
12 | 7, 8, 9, 7, 10, 11 | ixxun 13423 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) |
13 | 6, 12 | eqtrd 2780 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ ({𝐵} ∪ (𝐵(,)𝐶))) = (𝐴(,)𝐶)) |
14 | 1, 13 | eqtrid 2792 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 class class class wbr 5166 (class class class)co 7448 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 (,)cioo 13407 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 df-ico 13413 df-icc 13414 |
This theorem is referenced by: reconnlem1 24867 itgsplitioo 25893 lhop 26075 iocunico 43172 |
Copyright terms: Public domain | W3C validator |