Step | Hyp | Ref
| Expression |
1 | | f1of 6700 |
. . . . . . 7
⊢ (𝐹:𝑌–1-1-onto→𝑋 → 𝐹:𝑌⟶𝑋) |
2 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑥 ∈ 𝑌) → (𝐹‘𝑥) ∈ 𝑋) |
3 | 2 | ex 412 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → (𝑥 ∈ 𝑌 → (𝐹‘𝑥) ∈ 𝑋)) |
4 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐹‘𝑦) ∈ 𝑋) |
5 | 4 | ex 412 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → (𝑦 ∈ 𝑌 → (𝐹‘𝑦) ∈ 𝑋)) |
6 | 3, 5 | anim12d 608 |
. . . . . . 7
⊢ (𝐹:𝑌⟶𝑋 → ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑥) ∈ 𝑋 ∧ (𝐹‘𝑦) ∈ 𝑋))) |
7 | 1, 6 | syl 17 |
. . . . . 6
⊢ (𝐹:𝑌–1-1-onto→𝑋 → ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑥) ∈ 𝑋 ∧ (𝐹‘𝑦) ∈ 𝑋))) |
8 | | metcl 23393 |
. . . . . . 7
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝐹‘𝑥) ∈ 𝑋 ∧ (𝐹‘𝑦) ∈ 𝑋) → ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) ∈ ℝ) |
9 | 8 | 3expib 1120 |
. . . . . 6
⊢ (𝑀 ∈ (Met‘𝑋) → (((𝐹‘𝑥) ∈ 𝑋 ∧ (𝐹‘𝑦) ∈ 𝑋) → ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) ∈ ℝ)) |
10 | 7, 9 | sylan9r 508 |
. . . . 5
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) ∈ ℝ)) |
11 | 10 | 3adant1 1128 |
. . . 4
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) ∈ ℝ)) |
12 | 11 | ralrimivv 3113 |
. . 3
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) ∈ ℝ) |
13 | | metf1o.2 |
. . . 4
⊢ 𝑁 = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)𝑀(𝐹‘𝑦))) |
14 | 13 | fmpo 7881 |
. . 3
⊢
(∀𝑥 ∈
𝑌 ∀𝑦 ∈ 𝑌 ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) ∈ ℝ ↔ 𝑁:(𝑌 × 𝑌)⟶ℝ) |
15 | 12, 14 | sylib 217 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → 𝑁:(𝑌 × 𝑌)⟶ℝ) |
16 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
17 | 16 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) = ((𝐹‘𝑢)𝑀(𝐹‘𝑦))) |
18 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) |
19 | 18 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑢)𝑀(𝐹‘𝑦)) = ((𝐹‘𝑢)𝑀(𝐹‘𝑣))) |
20 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ∈ V |
21 | 17, 19, 13, 20 | ovmpo 7411 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝑢𝑁𝑣) = ((𝐹‘𝑢)𝑀(𝐹‘𝑣))) |
22 | 21 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → ((𝑢𝑁𝑣) = 0 ↔ ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) = 0)) |
23 | 22 | adantl 481 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝑢𝑁𝑣) = 0 ↔ ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) = 0)) |
24 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑢 ∈ 𝑌) → (𝐹‘𝑢) ∈ 𝑋) |
25 | 24 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → (𝑢 ∈ 𝑌 → (𝐹‘𝑢) ∈ 𝑋)) |
26 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑣 ∈ 𝑌) → (𝐹‘𝑣) ∈ 𝑋) |
27 | 26 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → (𝑣 ∈ 𝑌 → (𝐹‘𝑣) ∈ 𝑋)) |
28 | 25, 27 | anim12d 608 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌⟶𝑋 → ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋))) |
29 | 1, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹:𝑌–1-1-onto→𝑋 → ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋))) |
30 | 29 | imp 406 |
. . . . . . . . 9
⊢ ((𝐹:𝑌–1-1-onto→𝑋 ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋)) |
31 | 30 | adantll 710 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋)) |
32 | | meteq0 23400 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) → (((𝐹‘𝑢)𝑀(𝐹‘𝑣)) = 0 ↔ (𝐹‘𝑢) = (𝐹‘𝑣))) |
33 | 32 | 3expb 1118 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋)) → (((𝐹‘𝑢)𝑀(𝐹‘𝑣)) = 0 ↔ (𝐹‘𝑢) = (𝐹‘𝑣))) |
34 | 33 | adantlr 711 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋)) → (((𝐹‘𝑢)𝑀(𝐹‘𝑣)) = 0 ↔ (𝐹‘𝑢) = (𝐹‘𝑣))) |
35 | 31, 34 | syldan 590 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (((𝐹‘𝑢)𝑀(𝐹‘𝑣)) = 0 ↔ (𝐹‘𝑢) = (𝐹‘𝑣))) |
36 | | f1of1 6699 |
. . . . . . . . 9
⊢ (𝐹:𝑌–1-1-onto→𝑋 → 𝐹:𝑌–1-1→𝑋) |
37 | | f1fveq 7116 |
. . . . . . . . 9
⊢ ((𝐹:𝑌–1-1→𝑋 ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘𝑢) = (𝐹‘𝑣) ↔ 𝑢 = 𝑣)) |
38 | 36, 37 | sylan 579 |
. . . . . . . 8
⊢ ((𝐹:𝑌–1-1-onto→𝑋 ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘𝑢) = (𝐹‘𝑣) ↔ 𝑢 = 𝑣)) |
39 | 38 | adantll 710 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘𝑢) = (𝐹‘𝑣) ↔ 𝑢 = 𝑣)) |
40 | 23, 35, 39 | 3bitrd 304 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣)) |
41 | | ffvelrn 6941 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑤 ∈ 𝑌) → (𝐹‘𝑤) ∈ 𝑋) |
42 | 41 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑌⟶𝑋 → (𝑤 ∈ 𝑌 → (𝐹‘𝑤) ∈ 𝑋)) |
43 | 28, 42 | anim12d 608 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑌⟶𝑋 → (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → (((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋))) |
44 | 1, 43 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌–1-1-onto→𝑋 → (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → (((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋))) |
45 | 44 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑌–1-1-onto→𝑋 ∧ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌)) → (((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋)) |
46 | 45 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌)) → (((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋)) |
47 | | mettri2 23402 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝐹‘𝑤) ∈ 𝑋 ∧ (𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋)) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣)))) |
48 | 47 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑤) ∈ 𝑋 ∧ (𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) → (𝑀 ∈ (Met‘𝑋) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣))))) |
49 | 48 | 3expb 1118 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) ∈ 𝑋 ∧ ((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋)) → (𝑀 ∈ (Met‘𝑋) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣))))) |
50 | 49 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋) → (𝑀 ∈ (Met‘𝑋) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣))))) |
51 | 50 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋)) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣)))) |
52 | 51 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (((𝐹‘𝑢) ∈ 𝑋 ∧ (𝐹‘𝑣) ∈ 𝑋) ∧ (𝐹‘𝑤) ∈ 𝑋)) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣)))) |
53 | 46, 52 | syldan 590 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌)) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣)))) |
54 | 53 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣)))) |
55 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → (𝑢𝑁𝑣) = ((𝐹‘𝑢)𝑀(𝐹‘𝑣))) |
56 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
57 | 56 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥)𝑀(𝐹‘𝑦)) = ((𝐹‘𝑤)𝑀(𝐹‘𝑦))) |
58 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → (𝐹‘𝑦) = (𝐹‘𝑢)) |
59 | 58 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑢 → ((𝐹‘𝑤)𝑀(𝐹‘𝑦)) = ((𝐹‘𝑤)𝑀(𝐹‘𝑢))) |
60 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑤)𝑀(𝐹‘𝑢)) ∈ V |
61 | 57, 59, 13, 60 | ovmpo 7411 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌) → (𝑤𝑁𝑢) = ((𝐹‘𝑤)𝑀(𝐹‘𝑢))) |
62 | 61 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌) → (𝑤𝑁𝑢) = ((𝐹‘𝑤)𝑀(𝐹‘𝑢))) |
63 | 62 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → (𝑤𝑁𝑢) = ((𝐹‘𝑤)𝑀(𝐹‘𝑢))) |
64 | 18 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑤)𝑀(𝐹‘𝑦)) = ((𝐹‘𝑤)𝑀(𝐹‘𝑣))) |
65 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑤)𝑀(𝐹‘𝑣)) ∈ V |
66 | 57, 64, 13, 65 | ovmpo 7411 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝑤𝑁𝑣) = ((𝐹‘𝑤)𝑀(𝐹‘𝑣))) |
67 | 66 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌) → (𝑤𝑁𝑣) = ((𝐹‘𝑤)𝑀(𝐹‘𝑣))) |
68 | 67 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → (𝑤𝑁𝑣) = ((𝐹‘𝑤)𝑀(𝐹‘𝑣))) |
69 | 63, 68 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) = (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣)))) |
70 | 55, 69 | breq12d 5083 |
. . . . . . . . 9
⊢ (((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) ∧ 𝑤 ∈ 𝑌) → ((𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) ↔ ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣))))) |
71 | 70 | adantll 710 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ((𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) ↔ ((𝐹‘𝑢)𝑀(𝐹‘𝑣)) ≤ (((𝐹‘𝑤)𝑀(𝐹‘𝑢)) + ((𝐹‘𝑤)𝑀(𝐹‘𝑣))))) |
72 | 54, 71 | mpbird 256 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))) |
73 | 72 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))) |
74 | 40, 73 | jca 511 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))) |
75 | 74 | 3adantl1 1164 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))) |
76 | 75 | ex 412 |
. . 3
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))) |
77 | 76 | ralrimivv 3113 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))) |
78 | | ismet 23384 |
. . 3
⊢ (𝑌 ∈ 𝐴 → (𝑁 ∈ (Met‘𝑌) ↔ (𝑁:(𝑌 × 𝑌)⟶ℝ ∧ ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))))) |
79 | 78 | 3ad2ant1 1131 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → (𝑁 ∈ (Met‘𝑌) ↔ (𝑁:(𝑌 × 𝑌)⟶ℝ ∧ ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤 ∈ 𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))))) |
80 | 15, 77, 79 | mpbir2and 709 |
1
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌–1-1-onto→𝑋) → 𝑁 ∈ (Met‘𝑌)) |