MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsonprop Structured version   Visualization version   GIF version

Theorem trlsonprop 29434
Description: Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 16-Jan-2021.)
Hypothesis
Ref Expression
trlsonfval.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
trlsonprop (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 β†’ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Trailsβ€˜πΊ)𝑃)))

Proof of Theorem trlsonprop
Dummy variables π‘Ž 𝑏 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsonfval.v . 2 𝑉 = (Vtxβ€˜πΊ)
21istrlson 29433 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) β†’ (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Trailsβ€˜πΊ)𝑃)))
323adantl1 1163 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) β†’ (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Trailsβ€˜πΊ)𝑃)))
4 df-trlson 29419 . 2 TrailsOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Ž(WalksOnβ€˜π‘”)𝑏)𝑝 ∧ 𝑓(Trailsβ€˜π‘”)𝑝)}))
51, 3, 4wksonproplem 29430 1 (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 β†’ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Trailsβ€˜πΊ)𝑃)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3466   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  Vtxcvtx 28725  WalksOncwlkson 29323  Trailsctrls 29416  TrailsOnctrlson 29417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-trlson 29419
This theorem is referenced by:  trlsonistrl  29435  trlsonwlkon  29436
  Copyright terms: Public domain W3C validator