MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdlend Structured version   Visualization version   GIF version

Theorem swrdlend 14609
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdlend ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdlend
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 swrdval 14599 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
21adantr 480 . . 3 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
3 simpr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → 𝐿𝐹)
4 3simpc 1147 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
54adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
6 fzon 13659 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (𝐹..^𝐿) = ∅))
75, 6syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐿𝐹 ↔ (𝐹..^𝐿) = ∅))
83, 7mpbid 231 . . . . 5 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐹..^𝐿) = ∅)
9 0ss 4391 . . . . 5 ∅ ⊆ dom 𝑊
108, 9eqsstrdi 4031 . . . 4 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊)
1110iftrued 4531 . . 3 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))))
12 fzo0n 13660 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
1312biimpa 476 . . . . . 6 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (0..^(𝐿𝐹)) = ∅)
14133adantl1 1163 . . . . 5 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (0..^(𝐿𝐹)) = ∅)
1514mpteq1d 5236 . . . 4 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))))
16 mpt0 6686 . . . 4 (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅
1715, 16eqtrdi 2782 . . 3 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅)
182, 11, 173eqtrd 2770 . 2 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)
1918ex 412 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wss 3943  c0 4317  ifcif 4523  cop 4629   class class class wbr 5141  cmpt 5224  dom cdm 5669  cfv 6537  (class class class)co 7405  0cc0 11112   + caddc 11115  cle 11253  cmin 11448  cz 12562  ..^cfzo 13633  Word cword 14470   substr csubstr 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-substr 14597
This theorem is referenced by:  swrdnd  14610  swrdnd2  14611  swrdsb0eq  14619  swrdccat  14691
  Copyright terms: Public domain W3C validator