| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdlend | Structured version Visualization version GIF version | ||
| Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| swrdlend | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdval 14551 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
| 3 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → 𝐿 ≤ 𝐹) | |
| 4 | 3simpc 1150 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 6 | fzon 13580 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) |
| 8 | 3, 7 | mpbid 232 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) = ∅) |
| 9 | 0ss 4350 | . . . . 5 ⊢ ∅ ⊆ dom 𝑊 | |
| 10 | 8, 9 | eqsstrdi 3979 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊) |
| 11 | 10 | iftrued 4483 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹)))) |
| 12 | fzo0n 13581 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (0..^(𝐿 − 𝐹)) = ∅)) | |
| 13 | 12 | biimpa 476 | . . . . . 6 ⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
| 14 | 13 | 3adantl1 1167 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
| 15 | 14 | mpteq1d 5181 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹)))) |
| 16 | mpt0 6623 | . . . 4 ⊢ (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅ | |
| 17 | 15, 16 | eqtrdi 2782 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅) |
| 18 | 2, 11, 17 | 3eqtrd 2770 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅) |
| 19 | 18 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 ifcif 4475 〈cop 4582 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 0cc0 11006 + caddc 11009 ≤ cle 11147 − cmin 11344 ℤcz 12468 ..^cfzo 13554 Word cword 14420 substr csubstr 14548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-substr 14549 |
| This theorem is referenced by: swrdnd 14562 swrdnd2 14563 swrdsb0eq 14571 swrdccat 14642 |
| Copyright terms: Public domain | W3C validator |