![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdlend | Structured version Visualization version GIF version |
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
swrdlend | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdval 14691 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) | |
2 | 1 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
3 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → 𝐿 ≤ 𝐹) | |
4 | 3simpc 1150 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
6 | fzon 13737 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) |
8 | 3, 7 | mpbid 232 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) = ∅) |
9 | 0ss 4423 | . . . . 5 ⊢ ∅ ⊆ dom 𝑊 | |
10 | 8, 9 | eqsstrdi 4063 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊) |
11 | 10 | iftrued 4556 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹)))) |
12 | fzo0n 13738 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (0..^(𝐿 − 𝐹)) = ∅)) | |
13 | 12 | biimpa 476 | . . . . . 6 ⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
14 | 13 | 3adantl1 1166 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
15 | 14 | mpteq1d 5261 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹)))) |
16 | mpt0 6722 | . . . 4 ⊢ (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅ | |
17 | 15, 16 | eqtrdi 2796 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅) |
18 | 2, 11, 17 | 3eqtrd 2784 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅) |
19 | 18 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 ifcif 4548 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 0cc0 11184 + caddc 11187 ≤ cle 11325 − cmin 11520 ℤcz 12639 ..^cfzo 13711 Word cword 14562 substr csubstr 14688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-substr 14689 |
This theorem is referenced by: swrdnd 14702 swrdnd2 14703 swrdsb0eq 14711 swrdccat 14783 |
Copyright terms: Public domain | W3C validator |