Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrdlend | Structured version Visualization version GIF version |
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
swrdlend | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdval 14284 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) | |
2 | 1 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
3 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → 𝐿 ≤ 𝐹) | |
4 | 3simpc 1148 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
6 | fzon 13336 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) |
8 | 3, 7 | mpbid 231 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) = ∅) |
9 | 0ss 4327 | . . . . 5 ⊢ ∅ ⊆ dom 𝑊 | |
10 | 8, 9 | eqsstrdi 3971 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊) |
11 | 10 | iftrued 4464 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹)))) |
12 | fzo0n 13337 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (0..^(𝐿 − 𝐹)) = ∅)) | |
13 | 12 | biimpa 476 | . . . . . 6 ⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
14 | 13 | 3adantl1 1164 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
15 | 14 | mpteq1d 5165 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹)))) |
16 | mpt0 6559 | . . . 4 ⊢ (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅ | |
17 | 15, 16 | eqtrdi 2795 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅) |
18 | 2, 11, 17 | 3eqtrd 2782 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅) |
19 | 18 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ifcif 4456 〈cop 4564 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 ≤ cle 10941 − cmin 11135 ℤcz 12249 ..^cfzo 13311 Word cword 14145 substr csubstr 14281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-substr 14282 |
This theorem is referenced by: swrdnd 14295 swrdnd2 14296 swrdsb0eq 14304 swrdccat 14376 |
Copyright terms: Public domain | W3C validator |