![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdlend | Structured version Visualization version GIF version |
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
swrdlend | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdval 14599 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) | |
2 | 1 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
3 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → 𝐿 ≤ 𝐹) | |
4 | 3simpc 1147 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
6 | fzon 13659 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) |
8 | 3, 7 | mpbid 231 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) = ∅) |
9 | 0ss 4391 | . . . . 5 ⊢ ∅ ⊆ dom 𝑊 | |
10 | 8, 9 | eqsstrdi 4031 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊) |
11 | 10 | iftrued 4531 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹)))) |
12 | fzo0n 13660 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (0..^(𝐿 − 𝐹)) = ∅)) | |
13 | 12 | biimpa 476 | . . . . . 6 ⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
14 | 13 | 3adantl1 1163 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
15 | 14 | mpteq1d 5236 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹)))) |
16 | mpt0 6686 | . . . 4 ⊢ (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅ | |
17 | 15, 16 | eqtrdi 2782 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅) |
18 | 2, 11, 17 | 3eqtrd 2770 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅) |
19 | 18 | ex 412 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ∅c0 4317 ifcif 4523 ⟨cop 4629 class class class wbr 5141 ↦ cmpt 5224 dom cdm 5669 ‘cfv 6537 (class class class)co 7405 0cc0 11112 + caddc 11115 ≤ cle 11253 − cmin 11448 ℤcz 12562 ..^cfzo 13633 Word cword 14470 substr csubstr 14596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-substr 14597 |
This theorem is referenced by: swrdnd 14610 swrdnd2 14611 swrdsb0eq 14619 swrdccat 14691 |
Copyright terms: Public domain | W3C validator |