![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdlend | Structured version Visualization version GIF version |
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
swrdlend | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdval 14589 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) | |
2 | 1 | adantr 481 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
3 | simpr 485 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → 𝐿 ≤ 𝐹) | |
4 | 3simpc 1150 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
5 | 4 | adantr 481 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
6 | fzon 13649 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐿 ≤ 𝐹 ↔ (𝐹..^𝐿) = ∅)) |
8 | 3, 7 | mpbid 231 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) = ∅) |
9 | 0ss 4395 | . . . . 5 ⊢ ∅ ⊆ dom 𝑊 | |
10 | 8, 9 | eqsstrdi 4035 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊) |
11 | 10 | iftrued 4535 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹)))) |
12 | fzo0n 13650 | . . . . . . 7 ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (0..^(𝐿 − 𝐹)) = ∅)) | |
13 | 12 | biimpa 477 | . . . . . 6 ⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
14 | 13 | 3adantl1 1166 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (0..^(𝐿 − 𝐹)) = ∅) |
15 | 14 | mpteq1d 5242 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹)))) |
16 | mpt0 6689 | . . . 4 ⊢ (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅ | |
17 | 15, 16 | eqtrdi 2788 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅) |
18 | 2, 11, 17 | 3eqtrd 2776 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿 ≤ 𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅) |
19 | 18 | ex 413 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ∅c0 4321 ifcif 4527 ⟨cop 4633 class class class wbr 5147 ↦ cmpt 5230 dom cdm 5675 ‘cfv 6540 (class class class)co 7405 0cc0 11106 + caddc 11109 ≤ cle 11245 − cmin 11440 ℤcz 12554 ..^cfzo 13623 Word cword 14460 substr csubstr 14586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-substr 14587 |
This theorem is referenced by: swrdnd 14600 swrdnd2 14601 swrdsb0eq 14609 swrdccat 14681 |
Copyright terms: Public domain | W3C validator |