Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2 Structured version   Visualization version   GIF version

Theorem elaa2 43665
Description: Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
elaa2 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elaa2
Dummy variables 𝑔 𝑘 𝑧 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aasscn 25383 . . . 4 𝔸 ⊆ ℂ
2 eldifi 4057 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ 𝔸)
31, 2sselid 3915 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ ℂ)
4 elaa 25381 . . . . . 6 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
52, 4sylib 217 . . . . 5 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
65simprd 495 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0)
723ad2ant1 1131 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ∈ 𝔸)
8 eldifsni 4720 . . . . . . 7 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ≠ 0)
983ad2ant1 1131 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ≠ 0)
10 eldifi 4057 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ∈ (Poly‘ℤ))
11103ad2ant2 1132 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ∈ (Poly‘ℤ))
12 eldifsni 4720 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ≠ 0𝑝)
13123ad2ant2 1132 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ≠ 0𝑝)
14 simp3 1136 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → (𝑔𝐴) = 0)
15 fveq2 6756 . . . . . . . . 9 (𝑚 = 𝑛 → ((coeff‘𝑔)‘𝑚) = ((coeff‘𝑔)‘𝑛))
1615neeq1d 3002 . . . . . . . 8 (𝑚 = 𝑛 → (((coeff‘𝑔)‘𝑚) ≠ 0 ↔ ((coeff‘𝑔)‘𝑛) ≠ 0))
1716cbvrabv 3416 . . . . . . 7 {𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0} = {𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}
1817infeq1i 9167 . . . . . 6 inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ) = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}, ℝ, < )
19 fvoveq1 7278 . . . . . . 7 (𝑗 = 𝑘 → ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))) = ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
2019cbvmptv 5183 . . . . . 6 (𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
21 eqid 2738 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘)))
227, 9, 11, 13, 14, 18, 20, 21elaa2lem 43664 . . . . 5 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
2322rexlimdv3a 3214 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → (∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
246, 23mpd 15 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
253, 24jca 511 . 2 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
26 simpl 482 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ (Poly‘ℤ))
27 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑓 = 0𝑝 → (coeff‘𝑓) = (coeff‘0𝑝))
28 coe0 25322 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
2927, 28eqtrdi 2795 . . . . . . . . . . . . . 14 (𝑓 = 0𝑝 → (coeff‘𝑓) = (ℕ0 × {0}))
3029fveq1d 6758 . . . . . . . . . . . . 13 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = ((ℕ0 × {0})‘0))
31 0nn0 12178 . . . . . . . . . . . . . 14 0 ∈ ℕ0
32 fvconst2g 7059 . . . . . . . . . . . . . 14 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
3331, 31, 32mp2an 688 . . . . . . . . . . . . 13 ((ℕ0 × {0})‘0) = 0
3430, 33eqtrdi 2795 . . . . . . . . . . . 12 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = 0)
3534adantl 481 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ((coeff‘𝑓)‘0) = 0)
36 neneq 2948 . . . . . . . . . . . 12 (((coeff‘𝑓)‘0) ≠ 0 → ¬ ((coeff‘𝑓)‘0) = 0)
3736ad2antlr 723 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ¬ ((coeff‘𝑓)‘0) = 0)
3835, 37pm2.65da 813 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 = 0𝑝)
39 velsn 4574 . . . . . . . . . 10 (𝑓 ∈ {0𝑝} ↔ 𝑓 = 0𝑝)
4038, 39sylnibr 328 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 ∈ {0𝑝})
4126, 40eldifd 3894 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4241adantrr 713 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
43 simprr 769 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
4442, 43jca 511 . . . . . 6 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0))
4544reximi2 3171 . . . . 5 (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4645anim2i 616 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
47 elaa 25381 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
4846, 47sylibr 233 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ 𝔸)
49 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
50 nfv 1918 . . . . . 6 𝑓 𝐴 ∈ ℂ
51 nfre1 3234 . . . . . 6 𝑓𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)
5250, 51nfan 1903 . . . . 5 𝑓(𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
53 nfv 1918 . . . . 5 𝑓 ¬ 𝐴 ∈ {0}
54 simpl3r 1227 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → (𝑓𝐴) = 0)
55 fveq2 6756 . . . . . . . . . . . . . . 15 (𝐴 = 0 → (𝑓𝐴) = (𝑓‘0))
56 eqid 2738 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
5756coefv0 25314 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℤ) → (𝑓‘0) = ((coeff‘𝑓)‘0))
5855, 57sylan9eqr 2801 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
5958adantlr 711 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
60 simplr 765 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ((coeff‘𝑓)‘0) ≠ 0)
6159, 60eqnetrd 3010 . . . . . . . . . . . 12 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) ≠ 0)
6261neneqd 2947 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6362adantlrr 717 . . . . . . . . . 10 (((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
64633adantl1 1164 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6554, 64pm2.65da 813 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 = 0)
66 elsng 4572 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
6766biimpa 476 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
68673ad2antl1 1183 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
6965, 68mtand 812 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
70693exp 1117 . . . . . 6 (𝐴 ∈ ℂ → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7170adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7252, 53, 71rexlimd 3245 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0}))
7349, 72mpd 15 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
7448, 73eldifd 3894 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ (𝔸 ∖ {0}))
7525, 74impbii 208 1 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  cdif 3880  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135  0cn0 12163  cz 12249  ...cfz 13168  cexp 13710  Σcsu 15325  0𝑝c0p 24738  Polycply 25250  coeffccoe 25252  degcdgr 25253  𝔸caa 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257  df-aa 25380
This theorem is referenced by:  etransc  43714
  Copyright terms: Public domain W3C validator