Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2 Structured version   Visualization version   GIF version

Theorem elaa2 44465
Description: Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
elaa2 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elaa2
Dummy variables 𝑔 𝑘 𝑧 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aasscn 25678 . . . 4 𝔸 ⊆ ℂ
2 eldifi 4086 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ 𝔸)
31, 2sselid 3942 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ ℂ)
4 elaa 25676 . . . . . 6 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
52, 4sylib 217 . . . . 5 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
65simprd 496 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0)
723ad2ant1 1133 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ∈ 𝔸)
8 eldifsni 4750 . . . . . . 7 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ≠ 0)
983ad2ant1 1133 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ≠ 0)
10 eldifi 4086 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ∈ (Poly‘ℤ))
11103ad2ant2 1134 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ∈ (Poly‘ℤ))
12 eldifsni 4750 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ≠ 0𝑝)
13123ad2ant2 1134 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ≠ 0𝑝)
14 simp3 1138 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → (𝑔𝐴) = 0)
15 fveq2 6842 . . . . . . . . 9 (𝑚 = 𝑛 → ((coeff‘𝑔)‘𝑚) = ((coeff‘𝑔)‘𝑛))
1615neeq1d 3003 . . . . . . . 8 (𝑚 = 𝑛 → (((coeff‘𝑔)‘𝑚) ≠ 0 ↔ ((coeff‘𝑔)‘𝑛) ≠ 0))
1716cbvrabv 3417 . . . . . . 7 {𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0} = {𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}
1817infeq1i 9414 . . . . . 6 inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ) = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}, ℝ, < )
19 fvoveq1 7380 . . . . . . 7 (𝑗 = 𝑘 → ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))) = ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
2019cbvmptv 5218 . . . . . 6 (𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
21 eqid 2736 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘)))
227, 9, 11, 13, 14, 18, 20, 21elaa2lem 44464 . . . . 5 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
2322rexlimdv3a 3156 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → (∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
246, 23mpd 15 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
253, 24jca 512 . 2 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
26 simpl 483 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ (Poly‘ℤ))
27 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑓 = 0𝑝 → (coeff‘𝑓) = (coeff‘0𝑝))
28 coe0 25617 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
2927, 28eqtrdi 2792 . . . . . . . . . . . . . 14 (𝑓 = 0𝑝 → (coeff‘𝑓) = (ℕ0 × {0}))
3029fveq1d 6844 . . . . . . . . . . . . 13 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = ((ℕ0 × {0})‘0))
31 0nn0 12428 . . . . . . . . . . . . . 14 0 ∈ ℕ0
32 fvconst2g 7151 . . . . . . . . . . . . . 14 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
3331, 31, 32mp2an 690 . . . . . . . . . . . . 13 ((ℕ0 × {0})‘0) = 0
3430, 33eqtrdi 2792 . . . . . . . . . . . 12 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = 0)
3534adantl 482 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ((coeff‘𝑓)‘0) = 0)
36 neneq 2949 . . . . . . . . . . . 12 (((coeff‘𝑓)‘0) ≠ 0 → ¬ ((coeff‘𝑓)‘0) = 0)
3736ad2antlr 725 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ¬ ((coeff‘𝑓)‘0) = 0)
3835, 37pm2.65da 815 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 = 0𝑝)
39 velsn 4602 . . . . . . . . . 10 (𝑓 ∈ {0𝑝} ↔ 𝑓 = 0𝑝)
4038, 39sylnibr 328 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 ∈ {0𝑝})
4126, 40eldifd 3921 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4241adantrr 715 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
43 simprr 771 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
4442, 43jca 512 . . . . . 6 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0))
4544reximi2 3082 . . . . 5 (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4645anim2i 617 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
47 elaa 25676 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
4846, 47sylibr 233 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ 𝔸)
49 simpr 485 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
50 nfv 1917 . . . . . 6 𝑓 𝐴 ∈ ℂ
51 nfre1 3268 . . . . . 6 𝑓𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)
5250, 51nfan 1902 . . . . 5 𝑓(𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
53 nfv 1917 . . . . 5 𝑓 ¬ 𝐴 ∈ {0}
54 simpl3r 1229 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → (𝑓𝐴) = 0)
55 fveq2 6842 . . . . . . . . . . . . . . 15 (𝐴 = 0 → (𝑓𝐴) = (𝑓‘0))
56 eqid 2736 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
5756coefv0 25609 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℤ) → (𝑓‘0) = ((coeff‘𝑓)‘0))
5855, 57sylan9eqr 2798 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
5958adantlr 713 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
60 simplr 767 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ((coeff‘𝑓)‘0) ≠ 0)
6159, 60eqnetrd 3011 . . . . . . . . . . . 12 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) ≠ 0)
6261neneqd 2948 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6362adantlrr 719 . . . . . . . . . 10 (((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
64633adantl1 1166 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6554, 64pm2.65da 815 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 = 0)
66 elsng 4600 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
6766biimpa 477 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
68673ad2antl1 1185 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
6965, 68mtand 814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
70693exp 1119 . . . . . 6 (𝐴 ∈ ℂ → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7170adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7252, 53, 71rexlimd 3249 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0}))
7349, 72mpd 15 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
7448, 73eldifd 3921 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ (𝔸 ∖ {0}))
7525, 74impbii 208 1 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  cdif 3907  {csn 4586  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  infcinf 9377  cc 11049  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385  0cn0 12413  cz 12499  ...cfz 13424  cexp 13967  Σcsu 15570  0𝑝c0p 25033  Polycply 25545  coeffccoe 25547  degcdgr 25548  𝔸caa 25674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-coe 25551  df-dgr 25552  df-aa 25675
This theorem is referenced by:  etransc  44514
  Copyright terms: Public domain W3C validator