Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2 Structured version   Visualization version   GIF version

Theorem elaa2 43775
Description: Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
elaa2 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elaa2
Dummy variables 𝑔 𝑘 𝑧 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aasscn 25478 . . . 4 𝔸 ⊆ ℂ
2 eldifi 4061 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ 𝔸)
31, 2sselid 3919 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ ℂ)
4 elaa 25476 . . . . . 6 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
52, 4sylib 217 . . . . 5 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
65simprd 496 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0)
723ad2ant1 1132 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ∈ 𝔸)
8 eldifsni 4723 . . . . . . 7 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ≠ 0)
983ad2ant1 1132 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ≠ 0)
10 eldifi 4061 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ∈ (Poly‘ℤ))
11103ad2ant2 1133 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ∈ (Poly‘ℤ))
12 eldifsni 4723 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ≠ 0𝑝)
13123ad2ant2 1133 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ≠ 0𝑝)
14 simp3 1137 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → (𝑔𝐴) = 0)
15 fveq2 6774 . . . . . . . . 9 (𝑚 = 𝑛 → ((coeff‘𝑔)‘𝑚) = ((coeff‘𝑔)‘𝑛))
1615neeq1d 3003 . . . . . . . 8 (𝑚 = 𝑛 → (((coeff‘𝑔)‘𝑚) ≠ 0 ↔ ((coeff‘𝑔)‘𝑛) ≠ 0))
1716cbvrabv 3426 . . . . . . 7 {𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0} = {𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}
1817infeq1i 9237 . . . . . 6 inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ) = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}, ℝ, < )
19 fvoveq1 7298 . . . . . . 7 (𝑗 = 𝑘 → ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))) = ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
2019cbvmptv 5187 . . . . . 6 (𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
21 eqid 2738 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘)))
227, 9, 11, 13, 14, 18, 20, 21elaa2lem 43774 . . . . 5 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
2322rexlimdv3a 3215 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → (∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
246, 23mpd 15 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
253, 24jca 512 . 2 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
26 simpl 483 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ (Poly‘ℤ))
27 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑓 = 0𝑝 → (coeff‘𝑓) = (coeff‘0𝑝))
28 coe0 25417 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
2927, 28eqtrdi 2794 . . . . . . . . . . . . . 14 (𝑓 = 0𝑝 → (coeff‘𝑓) = (ℕ0 × {0}))
3029fveq1d 6776 . . . . . . . . . . . . 13 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = ((ℕ0 × {0})‘0))
31 0nn0 12248 . . . . . . . . . . . . . 14 0 ∈ ℕ0
32 fvconst2g 7077 . . . . . . . . . . . . . 14 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
3331, 31, 32mp2an 689 . . . . . . . . . . . . 13 ((ℕ0 × {0})‘0) = 0
3430, 33eqtrdi 2794 . . . . . . . . . . . 12 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = 0)
3534adantl 482 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ((coeff‘𝑓)‘0) = 0)
36 neneq 2949 . . . . . . . . . . . 12 (((coeff‘𝑓)‘0) ≠ 0 → ¬ ((coeff‘𝑓)‘0) = 0)
3736ad2antlr 724 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ¬ ((coeff‘𝑓)‘0) = 0)
3835, 37pm2.65da 814 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 = 0𝑝)
39 velsn 4577 . . . . . . . . . 10 (𝑓 ∈ {0𝑝} ↔ 𝑓 = 0𝑝)
4038, 39sylnibr 329 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 ∈ {0𝑝})
4126, 40eldifd 3898 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4241adantrr 714 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
43 simprr 770 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
4442, 43jca 512 . . . . . 6 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0))
4544reximi2 3175 . . . . 5 (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4645anim2i 617 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
47 elaa 25476 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
4846, 47sylibr 233 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ 𝔸)
49 simpr 485 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
50 nfv 1917 . . . . . 6 𝑓 𝐴 ∈ ℂ
51 nfre1 3239 . . . . . 6 𝑓𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)
5250, 51nfan 1902 . . . . 5 𝑓(𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
53 nfv 1917 . . . . 5 𝑓 ¬ 𝐴 ∈ {0}
54 simpl3r 1228 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → (𝑓𝐴) = 0)
55 fveq2 6774 . . . . . . . . . . . . . . 15 (𝐴 = 0 → (𝑓𝐴) = (𝑓‘0))
56 eqid 2738 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
5756coefv0 25409 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℤ) → (𝑓‘0) = ((coeff‘𝑓)‘0))
5855, 57sylan9eqr 2800 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
5958adantlr 712 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
60 simplr 766 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ((coeff‘𝑓)‘0) ≠ 0)
6159, 60eqnetrd 3011 . . . . . . . . . . . 12 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) ≠ 0)
6261neneqd 2948 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6362adantlrr 718 . . . . . . . . . 10 (((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
64633adantl1 1165 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6554, 64pm2.65da 814 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 = 0)
66 elsng 4575 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
6766biimpa 477 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
68673ad2antl1 1184 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
6965, 68mtand 813 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
70693exp 1118 . . . . . 6 (𝐴 ∈ ℂ → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7170adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7252, 53, 71rexlimd 3250 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0}))
7349, 72mpd 15 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
7448, 73eldifd 3898 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ (𝔸 ∖ {0}))
7525, 74impbii 208 1 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3884  {csn 4561  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  infcinf 9200  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  Σcsu 15397  0𝑝c0p 24833  Polycply 25345  coeffccoe 25347  degcdgr 25348  𝔸caa 25474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-coe 25351  df-dgr 25352  df-aa 25475
This theorem is referenced by:  etransc  43824
  Copyright terms: Public domain W3C validator