![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsacsbs | Structured version Visualization version GIF version |
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 21001. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
lbsacsbs.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
lbsacsbs.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
lbsacsbs.3 | ⊢ 𝑋 = (Base‘𝑊) |
lbsacsbs.4 | ⊢ 𝐼 = (mrInd‘𝐴) |
lbsacsbs.5 | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lbsacsbs | ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsacsbs.3 | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
2 | lbsacsbs.5 | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | eqid 2731 | . . 3 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs2 21001 | . 2 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))))) |
5 | lveclmod 20950 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | lbsacsbs.1 | . . . . . . 7 ⊢ 𝐴 = (LSubSp‘𝑊) | |
7 | lbsacsbs.2 | . . . . . . 7 ⊢ 𝑁 = (mrCls‘𝐴) | |
8 | 6, 3, 7 | mrclsp 20832 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁) |
10 | 9 | fveq1d 6893 | . . . 4 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁‘𝑆)) |
11 | 10 | eqeq1d 2733 | . . 3 ⊢ (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁‘𝑆) = 𝑋)) |
12 | 9 | fveq1d 6893 | . . . . . 6 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
13 | 12 | eleq2d 2818 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
14 | 13 | notbid 318 | . . . 4 ⊢ (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
15 | 14 | ralbidv 3176 | . . 3 ⊢ (𝑊 ∈ LVec → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
16 | 11, 15 | 3anbi23d 1438 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
17 | 3anan32 1096 | . . 3 ⊢ ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋)) | |
18 | 1, 6 | lssmre 20809 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋)) |
19 | lbsacsbs.4 | . . . . . 6 ⊢ 𝐼 = (mrInd‘𝐴) | |
20 | 7, 19 | ismri 17582 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
21 | 5, 18, 20 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
22 | 21 | anbi1d 629 | . . 3 ⊢ (𝑊 ∈ LVec → ((𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋))) |
23 | 17, 22 | bitr4id 290 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
24 | 4, 16, 23 | 3bitrd 305 | 1 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 ‘cfv 6543 Basecbs 17151 Moorecmre 17533 mrClscmrc 17534 mrIndcmri 17535 LModclmod 20702 LSubSpclss 20774 LSpanclspn 20814 LBasisclbs 20918 LVecclvec 20946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-mre 17537 df-mrc 17538 df-mri 17539 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lbs 20919 df-lvec 20947 |
This theorem is referenced by: lvecdim 21004 lvecdimfi 33137 |
Copyright terms: Public domain | W3C validator |