| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsacsbs | Structured version Visualization version GIF version | ||
| Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 21100. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| lbsacsbs.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
| lbsacsbs.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| lbsacsbs.3 | ⊢ 𝑋 = (Base‘𝑊) |
| lbsacsbs.4 | ⊢ 𝐼 = (mrInd‘𝐴) |
| lbsacsbs.5 | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbsacsbs | ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsacsbs.3 | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 2 | lbsacsbs.5 | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | eqid 2733 | . . 3 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs2 21100 | . 2 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))))) |
| 5 | lveclmod 21049 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 6 | lbsacsbs.1 | . . . . . . 7 ⊢ 𝐴 = (LSubSp‘𝑊) | |
| 7 | lbsacsbs.2 | . . . . . . 7 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 8 | 6, 3, 7 | mrclsp 20931 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁) |
| 10 | 9 | fveq1d 6833 | . . . 4 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁‘𝑆)) |
| 11 | 10 | eqeq1d 2735 | . . 3 ⊢ (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁‘𝑆) = 𝑋)) |
| 12 | 9 | fveq1d 6833 | . . . . . 6 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
| 13 | 12 | eleq2d 2819 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 14 | 13 | notbid 318 | . . . 4 ⊢ (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 15 | 14 | ralbidv 3156 | . . 3 ⊢ (𝑊 ∈ LVec → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 16 | 11, 15 | 3anbi23d 1441 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
| 17 | 3anan32 1096 | . . 3 ⊢ ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋)) | |
| 18 | 1, 6 | lssmre 20908 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋)) |
| 19 | lbsacsbs.4 | . . . . . 6 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 20 | 7, 19 | ismri 17545 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
| 21 | 5, 18, 20 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
| 22 | 21 | anbi1d 631 | . . 3 ⊢ (𝑊 ∈ LVec → ((𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋))) |
| 23 | 17, 22 | bitr4id 290 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
| 24 | 4, 16, 23 | 3bitrd 305 | 1 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 ‘cfv 6489 Basecbs 17127 Moorecmre 17492 mrClscmrc 17493 mrIndcmri 17494 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 LBasisclbs 21017 LVecclvec 21045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-0g 17352 df-mre 17496 df-mrc 17497 df-mri 17498 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-drng 20655 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lbs 21018 df-lvec 21046 |
| This theorem is referenced by: lvecdim 21103 lvecdimfi 33680 |
| Copyright terms: Public domain | W3C validator |