Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbsacsbs | Structured version Visualization version GIF version |
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 20416. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
lbsacsbs.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
lbsacsbs.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
lbsacsbs.3 | ⊢ 𝑋 = (Base‘𝑊) |
lbsacsbs.4 | ⊢ 𝐼 = (mrInd‘𝐴) |
lbsacsbs.5 | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lbsacsbs | ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsacsbs.3 | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
2 | lbsacsbs.5 | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | eqid 2738 | . . 3 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs2 20416 | . 2 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))))) |
5 | lveclmod 20368 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | lbsacsbs.1 | . . . . . . 7 ⊢ 𝐴 = (LSubSp‘𝑊) | |
7 | lbsacsbs.2 | . . . . . . 7 ⊢ 𝑁 = (mrCls‘𝐴) | |
8 | 6, 3, 7 | mrclsp 20251 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁) |
10 | 9 | fveq1d 6776 | . . . 4 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁‘𝑆)) |
11 | 10 | eqeq1d 2740 | . . 3 ⊢ (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁‘𝑆) = 𝑋)) |
12 | 9 | fveq1d 6776 | . . . . . 6 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
13 | 12 | eleq2d 2824 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
14 | 13 | notbid 318 | . . . 4 ⊢ (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
15 | 14 | ralbidv 3112 | . . 3 ⊢ (𝑊 ∈ LVec → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
16 | 11, 15 | 3anbi23d 1438 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
17 | 3anan32 1096 | . . 3 ⊢ ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋)) | |
18 | 1, 6 | lssmre 20228 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋)) |
19 | lbsacsbs.4 | . . . . . 6 ⊢ 𝐼 = (mrInd‘𝐴) | |
20 | 7, 19 | ismri 17340 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
21 | 5, 18, 20 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
22 | 21 | anbi1d 630 | . . 3 ⊢ (𝑊 ∈ LVec → ((𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋))) |
23 | 17, 22 | bitr4id 290 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
24 | 4, 16, 23 | 3bitrd 305 | 1 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ‘cfv 6433 Basecbs 16912 Moorecmre 17291 mrClscmrc 17292 mrIndcmri 17293 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 LBasisclbs 20336 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mre 17295 df-mrc 17296 df-mri 17297 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lbs 20337 df-lvec 20365 |
This theorem is referenced by: lvecdim 20419 lvecdimfi 31683 |
Copyright terms: Public domain | W3C validator |