MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsacsbs Structured version   Visualization version   GIF version

Theorem lbsacsbs 20333
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 20331. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
lbsacsbs.1 𝐴 = (LSubSp‘𝑊)
lbsacsbs.2 𝑁 = (mrCls‘𝐴)
lbsacsbs.3 𝑋 = (Base‘𝑊)
lbsacsbs.4 𝐼 = (mrInd‘𝐴)
lbsacsbs.5 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsacsbs (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))

Proof of Theorem lbsacsbs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lbsacsbs.3 . . 3 𝑋 = (Base‘𝑊)
2 lbsacsbs.5 . . 3 𝐽 = (LBasis‘𝑊)
3 eqid 2738 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs2 20331 . 2 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})))))
5 lveclmod 20283 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
6 lbsacsbs.1 . . . . . . 7 𝐴 = (LSubSp‘𝑊)
7 lbsacsbs.2 . . . . . . 7 𝑁 = (mrCls‘𝐴)
86, 3, 7mrclsp 20166 . . . . . 6 (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁)
95, 8syl 17 . . . . 5 (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁)
109fveq1d 6758 . . . 4 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁𝑆))
1110eqeq1d 2740 . . 3 (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁𝑆) = 𝑋))
129fveq1d 6758 . . . . . 6 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥})))
1312eleq2d 2824 . . . . 5 (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1413notbid 317 . . . 4 (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1514ralbidv 3120 . . 3 (𝑊 ∈ LVec → (∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1611, 153anbi23d 1437 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
17 3anan32 1095 . . 3 ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋))
181, 6lssmre 20143 . . . . 5 (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋))
19 lbsacsbs.4 . . . . . 6 𝐼 = (mrInd‘𝐴)
207, 19ismri 17257 . . . . 5 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
215, 18, 203syl 18 . . . 4 (𝑊 ∈ LVec → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
2221anbi1d 629 . . 3 (𝑊 ∈ LVec → ((𝑆𝐼 ∧ (𝑁𝑆) = 𝑋) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋)))
2317, 22bitr4id 289 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
244, 16, 233bitrd 304 1 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  wss 3883  {csn 4558  cfv 6418  Basecbs 16840  Moorecmre 17208  mrClscmrc 17209  mrIndcmri 17210  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LBasisclbs 20251  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mre 17212  df-mrc 17213  df-mri 17214  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lbs 20252  df-lvec 20280
This theorem is referenced by:  lvecdim  20334  lvecdimfi  31585
  Copyright terms: Public domain W3C validator