MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsacsbs Structured version   Visualization version   GIF version

Theorem lbsacsbs 19981
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 19979. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
lbsacsbs.1 𝐴 = (LSubSp‘𝑊)
lbsacsbs.2 𝑁 = (mrCls‘𝐴)
lbsacsbs.3 𝑋 = (Base‘𝑊)
lbsacsbs.4 𝐼 = (mrInd‘𝐴)
lbsacsbs.5 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsacsbs (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))

Proof of Theorem lbsacsbs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lbsacsbs.3 . . 3 𝑋 = (Base‘𝑊)
2 lbsacsbs.5 . . 3 𝐽 = (LBasis‘𝑊)
3 eqid 2759 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs2 19979 . 2 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})))))
5 lveclmod 19931 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
6 lbsacsbs.1 . . . . . . 7 𝐴 = (LSubSp‘𝑊)
7 lbsacsbs.2 . . . . . . 7 𝑁 = (mrCls‘𝐴)
86, 3, 7mrclsp 19814 . . . . . 6 (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁)
95, 8syl 17 . . . . 5 (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁)
109fveq1d 6653 . . . 4 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁𝑆))
1110eqeq1d 2761 . . 3 (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁𝑆) = 𝑋))
129fveq1d 6653 . . . . . 6 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥})))
1312eleq2d 2836 . . . . 5 (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1413notbid 322 . . . 4 (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1514ralbidv 3124 . . 3 (𝑊 ∈ LVec → (∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1611, 153anbi23d 1437 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
17 3anan32 1095 . . 3 ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋))
181, 6lssmre 19791 . . . . 5 (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋))
19 lbsacsbs.4 . . . . . 6 𝐼 = (mrInd‘𝐴)
207, 19ismri 16945 . . . . 5 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
215, 18, 203syl 18 . . . 4 (𝑊 ∈ LVec → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
2221anbi1d 633 . . 3 (𝑊 ∈ LVec → ((𝑆𝐼 ∧ (𝑁𝑆) = 𝑋) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋)))
2317, 22bitr4id 294 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
244, 16, 233bitrd 309 1 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wral 3068  cdif 3851  wss 3854  {csn 4515  cfv 6328  Basecbs 16526  Moorecmre 16896  mrClscmrc 16897  mrIndcmri 16898  LModclmod 19687  LSubSpclss 19756  LSpanclspn 19796  LBasisclbs 19899  LVecclvec 19927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-0g 16758  df-mre 16900  df-mrc 16901  df-mri 16902  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-grp 18157  df-minusg 18158  df-sbg 18159  df-mgp 19293  df-ur 19305  df-ring 19352  df-oppr 19429  df-dvdsr 19447  df-unit 19448  df-invr 19478  df-drng 19557  df-lmod 19689  df-lss 19757  df-lsp 19797  df-lbs 19900  df-lvec 19928
This theorem is referenced by:  lvecdim  19982  lvecdimfi  31189
  Copyright terms: Public domain W3C validator