![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsacsbs | Structured version Visualization version GIF version |
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 20912. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
lbsacsbs.1 | β’ π΄ = (LSubSpβπ) |
lbsacsbs.2 | β’ π = (mrClsβπ΄) |
lbsacsbs.3 | β’ π = (Baseβπ) |
lbsacsbs.4 | β’ πΌ = (mrIndβπ΄) |
lbsacsbs.5 | β’ π½ = (LBasisβπ) |
Ref | Expression |
---|---|
lbsacsbs | β’ (π β LVec β (π β π½ β (π β πΌ β§ (πβπ) = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsacsbs.3 | . . 3 β’ π = (Baseβπ) | |
2 | lbsacsbs.5 | . . 3 β’ π½ = (LBasisβπ) | |
3 | eqid 2732 | . . 3 β’ (LSpanβπ) = (LSpanβπ) | |
4 | 1, 2, 3 | islbs2 20912 | . 2 β’ (π β LVec β (π β π½ β (π β π β§ ((LSpanβπ)βπ) = π β§ βπ₯ β π Β¬ π₯ β ((LSpanβπ)β(π β {π₯}))))) |
5 | lveclmod 20861 | . . . . . 6 β’ (π β LVec β π β LMod) | |
6 | lbsacsbs.1 | . . . . . . 7 β’ π΄ = (LSubSpβπ) | |
7 | lbsacsbs.2 | . . . . . . 7 β’ π = (mrClsβπ΄) | |
8 | 6, 3, 7 | mrclsp 20744 | . . . . . 6 β’ (π β LMod β (LSpanβπ) = π) |
9 | 5, 8 | syl 17 | . . . . 5 β’ (π β LVec β (LSpanβπ) = π) |
10 | 9 | fveq1d 6893 | . . . 4 β’ (π β LVec β ((LSpanβπ)βπ) = (πβπ)) |
11 | 10 | eqeq1d 2734 | . . 3 β’ (π β LVec β (((LSpanβπ)βπ) = π β (πβπ) = π)) |
12 | 9 | fveq1d 6893 | . . . . . 6 β’ (π β LVec β ((LSpanβπ)β(π β {π₯})) = (πβ(π β {π₯}))) |
13 | 12 | eleq2d 2819 | . . . . 5 β’ (π β LVec β (π₯ β ((LSpanβπ)β(π β {π₯})) β π₯ β (πβ(π β {π₯})))) |
14 | 13 | notbid 317 | . . . 4 β’ (π β LVec β (Β¬ π₯ β ((LSpanβπ)β(π β {π₯})) β Β¬ π₯ β (πβ(π β {π₯})))) |
15 | 14 | ralbidv 3177 | . . 3 β’ (π β LVec β (βπ₯ β π Β¬ π₯ β ((LSpanβπ)β(π β {π₯})) β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})))) |
16 | 11, 15 | 3anbi23d 1439 | . 2 β’ (π β LVec β ((π β π β§ ((LSpanβπ)βπ) = π β§ βπ₯ β π Β¬ π₯ β ((LSpanβπ)β(π β {π₯}))) β (π β π β§ (πβπ) = π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))))) |
17 | 3anan32 1097 | . . 3 β’ ((π β π β§ (πβπ) = π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) β ((π β π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) β§ (πβπ) = π)) | |
18 | 1, 6 | lssmre 20721 | . . . . 5 β’ (π β LMod β π΄ β (Mooreβπ)) |
19 | lbsacsbs.4 | . . . . . 6 β’ πΌ = (mrIndβπ΄) | |
20 | 7, 19 | ismri 17579 | . . . . 5 β’ (π΄ β (Mooreβπ) β (π β πΌ β (π β π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))))) |
21 | 5, 18, 20 | 3syl 18 | . . . 4 β’ (π β LVec β (π β πΌ β (π β π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))))) |
22 | 21 | anbi1d 630 | . . 3 β’ (π β LVec β ((π β πΌ β§ (πβπ) = π) β ((π β π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) β§ (πβπ) = π))) |
23 | 17, 22 | bitr4id 289 | . 2 β’ (π β LVec β ((π β π β§ (πβπ) = π β§ βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) β (π β πΌ β§ (πβπ) = π))) |
24 | 4, 16, 23 | 3bitrd 304 | 1 β’ (π β LVec β (π β π½ β (π β πΌ β§ (πβπ) = π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 β cdif 3945 β wss 3948 {csn 4628 βcfv 6543 Basecbs 17148 Moorecmre 17530 mrClscmrc 17531 mrIndcmri 17532 LModclmod 20614 LSubSpclss 20686 LSpanclspn 20726 LBasisclbs 20829 LVecclvec 20857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-0g 17391 df-mre 17534 df-mrc 17535 df-mri 17536 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lbs 20830 df-lvec 20858 |
This theorem is referenced by: lvecdim 20915 lvecdimfi 32958 |
Copyright terms: Public domain | W3C validator |