![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islbs4 | Structured version Visualization version GIF version |
Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islbs4.b | ⊢ 𝐵 = (Base‘𝑊) |
islbs4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
islbs4.k | ⊢ 𝐾 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
islbs4 | ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6944 | . . 3 ⊢ (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V) | |
2 | islbs4.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | 1, 2 | eleq2s 2856 | . 2 ⊢ (𝑋 ∈ 𝐽 → 𝑊 ∈ V) |
4 | elfvex 6944 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) → 𝑊 ∈ V) |
6 | islbs4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
7 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | eqid 2734 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
9 | eqid 2734 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
10 | islbs4.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
11 | eqid 2734 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
12 | 6, 7, 8, 9, 2, 10, 11 | islbs 21092 | . . 3 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
13 | 3anan32 1096 | . . . 4 ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵)) | |
14 | 6, 8, 10, 7, 9, 11 | islinds2 21850 | . . . . 5 ⊢ (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
15 | 14 | anbi1d 631 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵))) |
16 | 13, 15 | bitr4id 290 | . . 3 ⊢ (𝑊 ∈ V → ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
17 | 12, 16 | bitrd 279 | . 2 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
18 | 3, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ∖ cdif 3959 ⊆ wss 3962 {csn 4630 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17485 LSpanclspn 20986 LBasisclbs 21090 LIndSclinds 21842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-lbs 21091 df-lindf 21843 df-linds 21844 |
This theorem is referenced by: lbslinds 21870 islinds3 21871 lmimlbs 21873 lindflbs 33386 rlmdim 33636 rgmoddimOLD 33637 dimkerim 33654 fedgmullem1 33656 fedgmul 33658 ccfldextdgrr 33696 lindsenlbs 37601 |
Copyright terms: Public domain | W3C validator |