Step | Hyp | Ref
| Expression |
1 | | elfvex 6926 |
. . 3
β’ (π β (LBasisβπ) β π β V) |
2 | | islbs4.j |
. . 3
β’ π½ = (LBasisβπ) |
3 | 1, 2 | eleq2s 2851 |
. 2
β’ (π β π½ β π β V) |
4 | | elfvex 6926 |
. . 3
β’ (π β (LIndSβπ) β π β V) |
5 | 4 | adantr 481 |
. 2
β’ ((π β (LIndSβπ) β§ (πΎβπ) = π΅) β π β V) |
6 | | islbs4.b |
. . . 4
β’ π΅ = (Baseβπ) |
7 | | eqid 2732 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
8 | | eqid 2732 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
9 | | eqid 2732 |
. . . 4
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
10 | | islbs4.k |
. . . 4
β’ πΎ = (LSpanβπ) |
11 | | eqid 2732 |
. . . 4
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
12 | 6, 7, 8, 9, 2, 10,
11 | islbs 20679 |
. . 3
β’ (π β V β (π β π½ β (π β π΅ β§ (πΎβπ) = π΅ β§ βπ₯ β π βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)π₯) β (πΎβ(π β {π₯}))))) |
13 | | 3anan32 1097 |
. . . 4
β’ ((π β π΅ β§ (πΎβπ) = π΅ β§ βπ₯ β π βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)π₯) β (πΎβ(π β {π₯}))) β ((π β π΅ β§ βπ₯ β π βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)π₯) β (πΎβ(π β {π₯}))) β§ (πΎβπ) = π΅)) |
14 | 6, 8, 10, 7, 9, 11 | islinds2 21359 |
. . . . 5
β’ (π β V β (π β (LIndSβπ) β (π β π΅ β§ βπ₯ β π βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)π₯) β (πΎβ(π β {π₯}))))) |
15 | 14 | anbi1d 630 |
. . . 4
β’ (π β V β ((π β (LIndSβπ) β§ (πΎβπ) = π΅) β ((π β π΅ β§ βπ₯ β π βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)π₯) β (πΎβ(π β {π₯}))) β§ (πΎβπ) = π΅))) |
16 | 13, 15 | bitr4id 289 |
. . 3
β’ (π β V β ((π β π΅ β§ (πΎβπ) = π΅ β§ βπ₯ β π βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)π₯) β (πΎβ(π β {π₯}))) β (π β (LIndSβπ) β§ (πΎβπ) = π΅))) |
17 | 12, 16 | bitrd 278 |
. 2
β’ (π β V β (π β π½ β (π β (LIndSβπ) β§ (πΎβπ) = π΅))) |
18 | 3, 5, 17 | pm5.21nii 379 |
1
β’ (π β π½ β (π β (LIndSβπ) β§ (πΎβπ) = π΅)) |