MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs4 Structured version   Visualization version   GIF version

Theorem islbs4 20949
Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) 𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islbs4.b 𝐵 = (Base‘𝑊)
islbs4.j 𝐽 = (LBasis‘𝑊)
islbs4.k 𝐾 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs4 (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵))

Proof of Theorem islbs4
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6789 . . 3 (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V)
2 islbs4.j . . 3 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2857 . 2 (𝑋𝐽𝑊 ∈ V)
4 elfvex 6789 . . 3 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V)
54adantr 480 . 2 ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵) → 𝑊 ∈ V)
6 islbs4.b . . . 4 𝐵 = (Base‘𝑊)
7 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
9 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
10 islbs4.k . . . 4 𝐾 = (LSpan‘𝑊)
11 eqid 2738 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
126, 7, 8, 9, 2, 10, 11islbs 20253 . . 3 (𝑊 ∈ V → (𝑋𝐽 ↔ (𝑋𝐵 ∧ (𝐾𝑋) = 𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥})))))
13 3anan32 1095 . . . 4 ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾𝑋) = 𝐵))
146, 8, 10, 7, 9, 11islinds2 20930 . . . . 5 (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥})))))
1514anbi1d 629 . . . 4 (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵) ↔ ((𝑋𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾𝑋) = 𝐵)))
1613, 15bitr4id 289 . . 3 (𝑊 ∈ V → ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵)))
1712, 16bitrd 278 . 2 (𝑊 ∈ V → (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵)))
183, 5, 17pm5.21nii 379 1 (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LSpanclspn 20148  LBasisclbs 20251  LIndSclinds 20922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-lbs 20252  df-lindf 20923  df-linds 20924
This theorem is referenced by:  lbslinds  20950  islinds3  20951  lmimlbs  20953  lindflbs  31476  rgmoddim  31595  dimkerim  31610  fedgmullem1  31612  fedgmul  31614  ccfldextdgrr  31644  lindsenlbs  35699
  Copyright terms: Public domain W3C validator