MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs4 Structured version   Visualization version   GIF version

Theorem islbs4 21792
Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) 𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islbs4.b 𝐵 = (Base‘𝑊)
islbs4.j 𝐽 = (LBasis‘𝑊)
islbs4.k 𝐾 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs4 (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵))

Proof of Theorem islbs4
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6914 . . 3 (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V)
2 islbs4.j . . 3 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2852 . 2 (𝑋𝐽𝑊 ∈ V)
4 elfvex 6914 . . 3 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V)
54adantr 480 . 2 ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵) → 𝑊 ∈ V)
6 islbs4.b . . . 4 𝐵 = (Base‘𝑊)
7 eqid 2735 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2735 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
9 eqid 2735 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
10 islbs4.k . . . 4 𝐾 = (LSpan‘𝑊)
11 eqid 2735 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
126, 7, 8, 9, 2, 10, 11islbs 21034 . . 3 (𝑊 ∈ V → (𝑋𝐽 ↔ (𝑋𝐵 ∧ (𝐾𝑋) = 𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥})))))
13 3anan32 1096 . . . 4 ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾𝑋) = 𝐵))
146, 8, 10, 7, 9, 11islinds2 21773 . . . . 5 (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥})))))
1514anbi1d 631 . . . 4 (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵) ↔ ((𝑋𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾𝑋) = 𝐵)))
1613, 15bitr4id 290 . . 3 (𝑊 ∈ V → ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵 ∧ ∀𝑥𝑋𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵)))
1712, 16bitrd 279 . 2 (𝑊 ∈ V → (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵)))
183, 5, 17pm5.21nii 378 1 (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  wss 3926  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  LSpanclspn 20928  LBasisclbs 21032  LIndSclinds 21765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-lbs 21033  df-lindf 21766  df-linds 21767
This theorem is referenced by:  lbslinds  21793  islinds3  21794  lmimlbs  21796  lindflbs  33394  rlmdim  33649  rgmoddimOLD  33650  dimkerim  33667  fedgmullem1  33669  fedgmul  33671  ccfldextdgrr  33713  lindsenlbs  37639
  Copyright terms: Public domain W3C validator