MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs4 Structured version   Visualization version   GIF version

Theorem islbs4 21378
Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑀 ∈ V ↦ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (((LSpanβ€˜π‘€) β€˜π‘) = (Baseβ€˜π‘€) ∧ 𝑏 ∈ (LIndSβ€˜π‘€))}). (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
islbs4.b 𝐡 = (Baseβ€˜π‘Š)
islbs4.j 𝐽 = (LBasisβ€˜π‘Š)
islbs4.k 𝐾 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
islbs4 (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndSβ€˜π‘Š) ∧ (πΎβ€˜π‘‹) = 𝐡))

Proof of Theorem islbs4
Dummy variables π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6926 . . 3 (𝑋 ∈ (LBasisβ€˜π‘Š) β†’ π‘Š ∈ V)
2 islbs4.j . . 3 𝐽 = (LBasisβ€˜π‘Š)
31, 2eleq2s 2851 . 2 (𝑋 ∈ 𝐽 β†’ π‘Š ∈ V)
4 elfvex 6926 . . 3 (𝑋 ∈ (LIndSβ€˜π‘Š) β†’ π‘Š ∈ V)
54adantr 481 . 2 ((𝑋 ∈ (LIndSβ€˜π‘Š) ∧ (πΎβ€˜π‘‹) = 𝐡) β†’ π‘Š ∈ V)
6 islbs4.b . . . 4 𝐡 = (Baseβ€˜π‘Š)
7 eqid 2732 . . . 4 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
8 eqid 2732 . . . 4 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
9 eqid 2732 . . . 4 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
10 islbs4.k . . . 4 𝐾 = (LSpanβ€˜π‘Š)
11 eqid 2732 . . . 4 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
126, 7, 8, 9, 2, 10, 11islbs 20679 . . 3 (π‘Š ∈ V β†’ (𝑋 ∈ 𝐽 ↔ (𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘˜ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (π‘˜( ·𝑠 β€˜π‘Š)π‘₯) ∈ (πΎβ€˜(𝑋 βˆ– {π‘₯})))))
13 3anan32 1097 . . . 4 ((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘˜ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (π‘˜( ·𝑠 β€˜π‘Š)π‘₯) ∈ (πΎβ€˜(𝑋 βˆ– {π‘₯}))) ↔ ((𝑋 βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘˜ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (π‘˜( ·𝑠 β€˜π‘Š)π‘₯) ∈ (πΎβ€˜(𝑋 βˆ– {π‘₯}))) ∧ (πΎβ€˜π‘‹) = 𝐡))
146, 8, 10, 7, 9, 11islinds2 21359 . . . . 5 (π‘Š ∈ V β†’ (𝑋 ∈ (LIndSβ€˜π‘Š) ↔ (𝑋 βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘˜ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (π‘˜( ·𝑠 β€˜π‘Š)π‘₯) ∈ (πΎβ€˜(𝑋 βˆ– {π‘₯})))))
1514anbi1d 630 . . . 4 (π‘Š ∈ V β†’ ((𝑋 ∈ (LIndSβ€˜π‘Š) ∧ (πΎβ€˜π‘‹) = 𝐡) ↔ ((𝑋 βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘˜ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (π‘˜( ·𝑠 β€˜π‘Š)π‘₯) ∈ (πΎβ€˜(𝑋 βˆ– {π‘₯}))) ∧ (πΎβ€˜π‘‹) = 𝐡)))
1613, 15bitr4id 289 . . 3 (π‘Š ∈ V β†’ ((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘˜ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (π‘˜( ·𝑠 β€˜π‘Š)π‘₯) ∈ (πΎβ€˜(𝑋 βˆ– {π‘₯}))) ↔ (𝑋 ∈ (LIndSβ€˜π‘Š) ∧ (πΎβ€˜π‘‹) = 𝐡)))
1712, 16bitrd 278 . 2 (π‘Š ∈ V β†’ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndSβ€˜π‘Š) ∧ (πΎβ€˜π‘‹) = 𝐡)))
183, 5, 17pm5.21nii 379 1 (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndSβ€˜π‘Š) ∧ (πΎβ€˜π‘‹) = 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βˆ– cdif 3944   βŠ† wss 3947  {csn 4627  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  LSpanclspn 20574  LBasisclbs 20677  LIndSclinds 21351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-lbs 20678  df-lindf 21352  df-linds 21353
This theorem is referenced by:  lbslinds  21379  islinds3  21380  lmimlbs  21382  lindflbs  32483  rlmdim  32682  rgmoddimOLD  32683  dimkerim  32700  fedgmullem1  32702  fedgmul  32704  ccfldextdgrr  32734  lindsenlbs  36471
  Copyright terms: Public domain W3C validator