| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islbs4 | Structured version Visualization version GIF version | ||
| Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| islbs4.b | ⊢ 𝐵 = (Base‘𝑊) |
| islbs4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| islbs4.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| islbs4 | ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6896 | . . 3 ⊢ (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V) | |
| 2 | islbs4.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | 1, 2 | eleq2s 2846 | . 2 ⊢ (𝑋 ∈ 𝐽 → 𝑊 ∈ V) |
| 4 | elfvex 6896 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) → 𝑊 ∈ V) |
| 6 | islbs4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 10 | islbs4.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 11 | eqid 2729 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 12 | 6, 7, 8, 9, 2, 10, 11 | islbs 20983 | . . 3 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
| 13 | 3anan32 1096 | . . . 4 ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵)) | |
| 14 | 6, 8, 10, 7, 9, 11 | islinds2 21722 | . . . . 5 ⊢ (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
| 15 | 14 | anbi1d 631 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵))) |
| 16 | 13, 15 | bitr4id 290 | . . 3 ⊢ (𝑊 ∈ V → ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
| 17 | 12, 16 | bitrd 279 | . 2 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
| 18 | 3, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 LSpanclspn 20877 LBasisclbs 20981 LIndSclinds 21714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-lbs 20982 df-lindf 21715 df-linds 21716 |
| This theorem is referenced by: lbslinds 21742 islinds3 21743 lmimlbs 21745 lindflbs 33350 rlmdim 33605 rgmoddimOLD 33606 dimkerim 33623 fedgmullem1 33625 fedgmul 33627 ccfldextdgrr 33667 lindsenlbs 37609 |
| Copyright terms: Public domain | W3C validator |