![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islbs4 | Structured version Visualization version GIF version |
Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islbs4.b | ⊢ 𝐵 = (Base‘𝑊) |
islbs4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
islbs4.k | ⊢ 𝐾 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
islbs4 | ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6958 | . . 3 ⊢ (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V) | |
2 | islbs4.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | 1, 2 | eleq2s 2862 | . 2 ⊢ (𝑋 ∈ 𝐽 → 𝑊 ∈ V) |
4 | elfvex 6958 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) → 𝑊 ∈ V) |
6 | islbs4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
7 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
9 | eqid 2740 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
10 | islbs4.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
11 | eqid 2740 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
12 | 6, 7, 8, 9, 2, 10, 11 | islbs 21098 | . . 3 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
13 | 3anan32 1097 | . . . 4 ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵)) | |
14 | 6, 8, 10, 7, 9, 11 | islinds2 21856 | . . . . 5 ⊢ (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
15 | 14 | anbi1d 630 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵))) |
16 | 13, 15 | bitr4id 290 | . . 3 ⊢ (𝑊 ∈ V → ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
17 | 12, 16 | bitrd 279 | . 2 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
18 | 3, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LSpanclspn 20992 LBasisclbs 21096 LIndSclinds 21848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-lbs 21097 df-lindf 21849 df-linds 21850 |
This theorem is referenced by: lbslinds 21876 islinds3 21877 lmimlbs 21879 lindflbs 33372 rlmdim 33622 rgmoddimOLD 33623 dimkerim 33640 fedgmullem1 33642 fedgmul 33644 ccfldextdgrr 33682 lindsenlbs 37575 |
Copyright terms: Public domain | W3C validator |