Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islbs4 | Structured version Visualization version GIF version |
Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islbs4.b | ⊢ 𝐵 = (Base‘𝑊) |
islbs4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
islbs4.k | ⊢ 𝐾 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
islbs4 | ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6807 | . . 3 ⊢ (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V) | |
2 | islbs4.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | 1, 2 | eleq2s 2857 | . 2 ⊢ (𝑋 ∈ 𝐽 → 𝑊 ∈ V) |
4 | elfvex 6807 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V) | |
5 | 4 | adantr 481 | . 2 ⊢ ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) → 𝑊 ∈ V) |
6 | islbs4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
7 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
9 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
10 | islbs4.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
12 | 6, 7, 8, 9, 2, 10, 11 | islbs 20338 | . . 3 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
13 | 3anan32 1096 | . . . 4 ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵)) | |
14 | 6, 8, 10, 7, 9, 11 | islinds2 21020 | . . . . 5 ⊢ (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
15 | 14 | anbi1d 630 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵))) |
16 | 13, 15 | bitr4id 290 | . . 3 ⊢ (𝑊 ∈ V → ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
17 | 12, 16 | bitrd 278 | . 2 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
18 | 3, 5, 17 | pm5.21nii 380 | 1 ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 LSpanclspn 20233 LBasisclbs 20336 LIndSclinds 21012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-lbs 20337 df-lindf 21013 df-linds 21014 |
This theorem is referenced by: lbslinds 21040 islinds3 21041 lmimlbs 21043 lindflbs 31574 rgmoddim 31693 dimkerim 31708 fedgmullem1 31710 fedgmul 31712 ccfldextdgrr 31742 lindsenlbs 35772 |
Copyright terms: Public domain | W3C validator |