| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islbs4 | Structured version Visualization version GIF version | ||
| Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| islbs4.b | ⊢ 𝐵 = (Base‘𝑊) |
| islbs4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| islbs4.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| islbs4 | ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6857 | . . 3 ⊢ (𝑋 ∈ (LBasis‘𝑊) → 𝑊 ∈ V) | |
| 2 | islbs4.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | 1, 2 | eleq2s 2849 | . 2 ⊢ (𝑋 ∈ 𝐽 → 𝑊 ∈ V) |
| 4 | elfvex 6857 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ V) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) → 𝑊 ∈ V) |
| 6 | islbs4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 10 | islbs4.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 11 | eqid 2731 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 12 | 6, 7, 8, 9, 2, 10, 11 | islbs 21010 | . . 3 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
| 13 | 3anan32 1096 | . . . 4 ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵)) | |
| 14 | 6, 8, 10, 7, 9, 11 | islinds2 21750 | . . . . 5 ⊢ (𝑊 ∈ V → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))))) |
| 15 | 14 | anbi1d 631 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵) ↔ ((𝑋 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ∧ (𝐾‘𝑋) = 𝐵))) |
| 16 | 13, 15 | bitr4id 290 | . . 3 ⊢ (𝑊 ∈ V → ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵 ∧ ∀𝑥 ∈ 𝑋 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)𝑥) ∈ (𝐾‘(𝑋 ∖ {𝑥}))) ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
| 17 | 12, 16 | bitrd 279 | . 2 ⊢ (𝑊 ∈ V → (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵))) |
| 18 | 3, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LSpanclspn 20904 LBasisclbs 21008 LIndSclinds 21742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-lbs 21009 df-lindf 21743 df-linds 21744 |
| This theorem is referenced by: lbslinds 21770 islinds3 21771 lmimlbs 21773 lindflbs 33344 rlmdim 33622 rgmoddimOLD 33623 dimkerim 33640 fedgmullem1 33642 fedgmul 33644 ccfldextdgrr 33685 lindsenlbs 37663 |
| Copyright terms: Public domain | W3C validator |