MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno3 Structured version   Visualization version   GIF version

Theorem elno3 27600
Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
elno3 (𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))

Proof of Theorem elno3
StepHypRef Expression
1 3anan32 1096 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On))
2 elno2 27599 . 2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
3 df-f 6503 . . . 4 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
4 funfn 6530 . . . . 5 (Fun 𝐴𝐴 Fn dom 𝐴)
54anbi1i 624 . . . 4 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
63, 5bitr4i 278 . . 3 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
76anbi1i 624 . 2 ((𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On))
81, 2, 73bitr4i 303 1 (𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109  wss 3911  {cpr 4587  dom cdm 5631  ran crn 5632  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  wf 6495  1oc1o 8404  2oc2o 8405   No csur 27584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-no 27587
This theorem is referenced by:  noxp1o  27608  noseponlem  27609
  Copyright terms: Public domain W3C validator