Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elno3 | Structured version Visualization version GIF version |
Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.) |
Ref | Expression |
---|---|
elno3 | ⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1096 | . 2 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On)) | |
2 | elno2 33857 | . 2 ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) | |
3 | df-f 6437 | . . . 4 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) | |
4 | funfn 6464 | . . . . 5 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
5 | 4 | anbi1i 624 | . . . 4 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
6 | 3, 5 | bitr4i 277 | . . 3 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
7 | 6 | anbi1i 624 | . 2 ⊢ ((𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On)) |
8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 {cpr 4563 dom cdm 5589 ran crn 5590 Oncon0 6266 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 1oc1o 8290 2oc2o 8291 No csur 33843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-no 33846 |
This theorem is referenced by: noxp1o 33866 noseponlem 33867 |
Copyright terms: Public domain | W3C validator |