![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elno3 | Structured version Visualization version GIF version |
Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.) |
Ref | Expression |
---|---|
elno3 | ⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1097 | . 2 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On)) | |
2 | elno2 27154 | . 2 ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) | |
3 | df-f 6547 | . . . 4 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) | |
4 | funfn 6578 | . . . . 5 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
5 | 4 | anbi1i 624 | . . . 4 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
6 | 3, 5 | bitr4i 277 | . . 3 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
7 | 6 | anbi1i 624 | . 2 ⊢ ((𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On)) |
8 | 1, 2, 7 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ⊆ wss 3948 {cpr 4630 dom cdm 5676 ran crn 5677 Oncon0 6364 Fun wfun 6537 Fn wfn 6538 ⟶wf 6539 1oc1o 8458 2oc2o 8459 No csur 27140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-no 27143 |
This theorem is referenced by: noxp1o 27163 noseponlem 27164 |
Copyright terms: Public domain | W3C validator |