MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno3 Structured version   Visualization version   GIF version

Theorem elno3 27567
Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
elno3 (𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))

Proof of Theorem elno3
StepHypRef Expression
1 3anan32 1096 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On))
2 elno2 27566 . 2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
3 df-f 6515 . . . 4 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
4 funfn 6546 . . . . 5 (Fun 𝐴𝐴 Fn dom 𝐴)
54anbi1i 624 . . . 4 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
63, 5bitr4i 278 . . 3 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
76anbi1i 624 . 2 ((𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On))
81, 2, 73bitr4i 303 1 (𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109  wss 3914  {cpr 4591  dom cdm 5638  ran crn 5639  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  wf 6507  1oc1o 8427  2oc2o 8428   No csur 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-no 27554
This theorem is referenced by:  noxp1o  27575  noseponlem  27576
  Copyright terms: Public domain W3C validator