Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elno3 Structured version   Visualization version   GIF version

Theorem elno3 33855
Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
elno3 (𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))

Proof of Theorem elno3
StepHypRef Expression
1 3anan32 1096 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On))
2 elno2 33854 . 2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
3 df-f 6439 . . . 4 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
4 funfn 6466 . . . . 5 (Fun 𝐴𝐴 Fn dom 𝐴)
54anbi1i 624 . . . 4 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
63, 5bitr4i 277 . . 3 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
76anbi1i 624 . 2 ((𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On) ↔ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) ∧ dom 𝐴 ∈ On))
81, 2, 73bitr4i 303 1 (𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086  wcel 2106  wss 3888  {cpr 4565  dom cdm 5591  ran crn 5592  Oncon0 6268  Fun wfun 6429   Fn wfn 6430  wf 6431  1oc1o 8288  2oc2o 8289   No csur 33840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pr 5354
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-no 33843
This theorem is referenced by:  noxp1o  33863  noseponlem  33864
  Copyright terms: Public domain W3C validator