![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cndprobprob | Structured version Visualization version GIF version |
Description: The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
cndprobprob | ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domprobmeas 34367 | . . . 4 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 𝑃 ∈ (measures‘dom 𝑃)) |
3 | simp2 1137 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 𝐵 ∈ dom 𝑃) | |
4 | prob01 34370 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑃‘𝐵) ∈ (0[,]1)) | |
5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ∈ (0[,]1)) |
6 | elunitrn 13521 | . . . . 5 ⊢ ((𝑃‘𝐵) ∈ (0[,]1) → (𝑃‘𝐵) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ∈ ℝ) |
8 | elunitge0 33837 | . . . . . 6 ⊢ ((𝑃‘𝐵) ∈ (0[,]1) → 0 ≤ (𝑃‘𝐵)) | |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 0 ≤ (𝑃‘𝐵)) |
10 | simp3 1138 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ≠ 0) | |
11 | 7, 9, 10 | ne0gt0d 11421 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 0 < (𝑃‘𝐵)) |
12 | 7, 11 | elrpd 13090 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ∈ ℝ+) |
13 | probmeasb 34387 | . . 3 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ∈ ℝ+) → (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob) | |
14 | 2, 3, 12, 13 | syl3anc 1371 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob) |
15 | 3anan32 1097 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ↔ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) ∧ 𝑎 ∈ dom 𝑃)) | |
16 | cndprobval 34390 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝑎, 𝐵〉) = ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) | |
17 | 15, 16 | sylbir 235 | . . . . 5 ⊢ (((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) ∧ 𝑎 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝑎, 𝐵〉) = ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) |
18 | 17 | mpteq2dva 5266 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) = (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵)))) |
19 | 18 | eleq1d 2829 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → ((𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob ↔ (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob)) |
20 | 19 | 3adant3 1132 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → ((𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob ↔ (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob)) |
21 | 14, 20 | mpbird 257 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5695 ‘cfv 6568 (class class class)co 7443 ℝcr 11177 0cc0 11178 1c1 11179 ≤ cle 11319 / cdiv 11941 ℝ+crp 13051 [,]cicc 13404 measurescmeas 34151 Probcprb 34364 cprobccprob 34388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-inf2 9704 ax-ac2 10526 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 ax-addf 11257 ax-mulf 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-fi 9474 df-sup 9505 df-inf 9506 df-oi 9573 df-dju 9964 df-card 10002 df-acn 10005 df-ac 10179 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-q 13008 df-rp 13052 df-xneg 13169 df-xadd 13170 df-xmul 13171 df-ioo 13405 df-ioc 13406 df-ico 13407 df-icc 13408 df-fz 13562 df-fzo 13706 df-fl 13837 df-mod 13915 df-seq 14047 df-exp 14107 df-fac 14317 df-bc 14346 df-hash 14374 df-shft 15110 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-limsup 15511 df-clim 15528 df-rlim 15529 df-sum 15729 df-ef 16109 df-sin 16111 df-cos 16112 df-pi 16114 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-rest 17476 df-topn 17477 df-0g 17495 df-gsum 17496 df-topgen 17497 df-pt 17498 df-prds 17501 df-ordt 17555 df-xrs 17556 df-qtop 17561 df-imas 17562 df-xps 17564 df-mre 17638 df-mrc 17639 df-acs 17641 df-ps 18630 df-tsr 18631 df-plusf 18671 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-submnd 18813 df-grp 18970 df-minusg 18971 df-sbg 18972 df-mulg 19102 df-subg 19157 df-cntz 19351 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-ring 20256 df-cring 20257 df-subrng 20566 df-subrg 20591 df-abv 20826 df-lmod 20876 df-scaf 20877 df-sra 21189 df-rgmod 21190 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22913 df-topon 22930 df-topsp 22952 df-bases 22966 df-cld 23040 df-ntr 23041 df-cls 23042 df-nei 23119 df-lp 23157 df-perf 23158 df-cn 23248 df-cnp 23249 df-haus 23336 df-tx 23583 df-hmeo 23776 df-fil 23867 df-fm 23959 df-flim 23960 df-flf 23961 df-tmd 24093 df-tgp 24094 df-tsms 24148 df-trg 24181 df-xms 24343 df-ms 24344 df-tms 24345 df-nm 24608 df-ngp 24609 df-nrg 24611 df-nlm 24612 df-ii 24914 df-cncf 24915 df-limc 25913 df-dv 25914 df-log 26608 df-xdiv 32874 df-esum 33984 df-siga 34065 df-meas 34152 df-prob 34365 df-cndprob 34389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |