![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cndprobprob | Structured version Visualization version GIF version |
Description: The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
cndprobprob | ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domprobmeas 34390 | . . . 4 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 𝑃 ∈ (measures‘dom 𝑃)) |
3 | simp2 1138 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 𝐵 ∈ dom 𝑃) | |
4 | prob01 34393 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑃‘𝐵) ∈ (0[,]1)) | |
5 | 4 | 3adant3 1133 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ∈ (0[,]1)) |
6 | elunitrn 13503 | . . . . 5 ⊢ ((𝑃‘𝐵) ∈ (0[,]1) → (𝑃‘𝐵) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ∈ ℝ) |
8 | elunitge0 33876 | . . . . . 6 ⊢ ((𝑃‘𝐵) ∈ (0[,]1) → 0 ≤ (𝑃‘𝐵)) | |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 0 ≤ (𝑃‘𝐵)) |
10 | simp3 1139 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ≠ 0) | |
11 | 7, 9, 10 | ne0gt0d 11394 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → 0 < (𝑃‘𝐵)) |
12 | 7, 11 | elrpd 13070 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑃‘𝐵) ∈ ℝ+) |
13 | probmeasb 34410 | . . 3 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ∈ ℝ+) → (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob) | |
14 | 2, 3, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob) |
15 | 3anan32 1097 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ↔ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) ∧ 𝑎 ∈ dom 𝑃)) | |
16 | cndprobval 34413 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝑎, 𝐵〉) = ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) | |
17 | 15, 16 | sylbir 235 | . . . . 5 ⊢ (((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) ∧ 𝑎 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝑎, 𝐵〉) = ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) |
18 | 17 | mpteq2dva 5240 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) = (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵)))) |
19 | 18 | eleq1d 2825 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → ((𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob ↔ (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob)) |
20 | 19 | 3adant3 1133 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → ((𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob ↔ (𝑎 ∈ dom 𝑃 ↦ ((𝑃‘(𝑎 ∩ 𝐵)) / (𝑃‘𝐵))) ∈ Prob)) |
21 | 14, 20 | mpbird 257 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 ∩ cin 3949 〈cop 4630 class class class wbr 5141 ↦ cmpt 5223 dom cdm 5683 ‘cfv 6559 (class class class)co 7429 ℝcr 11150 0cc0 11151 1c1 11152 ≤ cle 11292 / cdiv 11916 ℝ+crp 13030 [,]cicc 13386 measurescmeas 34174 Probcprb 34387 cprobccprob 34411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-inf2 9677 ax-ac2 10499 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 ax-addf 11230 ax-mulf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-disj 5109 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-of 7694 df-om 7884 df-1st 8010 df-2nd 8011 df-supp 8182 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-er 8741 df-map 8864 df-pm 8865 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-fsupp 9398 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-dju 9937 df-card 9975 df-acn 9978 df-ac 10152 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-q 12987 df-rp 13031 df-xneg 13150 df-xadd 13151 df-xmul 13152 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-shft 15102 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-ef 16099 df-sin 16101 df-cos 16102 df-pi 16104 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-starv 17308 df-sca 17309 df-vsca 17310 df-ip 17311 df-tset 17312 df-ple 17313 df-ds 17315 df-unif 17316 df-hom 17317 df-cco 17318 df-rest 17463 df-topn 17464 df-0g 17482 df-gsum 17483 df-topgen 17484 df-pt 17485 df-prds 17488 df-ordt 17542 df-xrs 17543 df-qtop 17548 df-imas 17549 df-xps 17551 df-mre 17625 df-mrc 17626 df-acs 17628 df-ps 18607 df-tsr 18608 df-plusf 18648 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-mhm 18792 df-submnd 18793 df-grp 18950 df-minusg 18951 df-sbg 18952 df-mulg 19082 df-subg 19137 df-cntz 19331 df-cmn 19796 df-abl 19797 df-mgp 20134 df-rng 20146 df-ur 20175 df-ring 20228 df-cring 20229 df-subrng 20538 df-subrg 20562 df-abv 20802 df-lmod 20852 df-scaf 20853 df-sra 21164 df-rgmod 21165 df-psmet 21348 df-xmet 21349 df-met 21350 df-bl 21351 df-mopn 21352 df-fbas 21353 df-fg 21354 df-cnfld 21357 df-top 22890 df-topon 22907 df-topsp 22929 df-bases 22943 df-cld 23017 df-ntr 23018 df-cls 23019 df-nei 23096 df-lp 23134 df-perf 23135 df-cn 23225 df-cnp 23226 df-haus 23313 df-tx 23560 df-hmeo 23753 df-fil 23844 df-fm 23936 df-flim 23937 df-flf 23938 df-tmd 24070 df-tgp 24071 df-tsms 24125 df-trg 24158 df-xms 24320 df-ms 24321 df-tms 24322 df-nm 24585 df-ngp 24586 df-nrg 24588 df-nlm 24589 df-ii 24893 df-cncf 24894 df-limc 25891 df-dv 25892 df-log 26588 df-xdiv 32887 df-esum 34007 df-siga 34088 df-meas 34175 df-prob 34388 df-cndprob 34412 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |