![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmf | Structured version Visualization version GIF version |
Description: The predicate "πΉ is a real-valued measurable function w.r.t. to the sigma-algebra π". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of πΉ is required to be a subset of the underlying set of π. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmf.s | β’ (π β π β SAlg) |
issmf.d | β’ π· = dom πΉ |
Ref | Expression |
---|---|
issmf | β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmf.s | . . 3 β’ (π β π β SAlg) | |
2 | issmf.d | . . 3 β’ π· = dom πΉ | |
3 | 1, 2 | issmflem 45433 | . 2 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·)))) |
4 | breq2 5152 | . . . . . . . 8 β’ (π = π β ((πΉβπ¦) < π β (πΉβπ¦) < π)) | |
5 | 4 | rabbidv 3440 | . . . . . . 7 β’ (π = π β {π¦ β π· β£ (πΉβπ¦) < π} = {π¦ β π· β£ (πΉβπ¦) < π}) |
6 | 5 | eleq1d 2818 | . . . . . 6 β’ (π = π β ({π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·))) |
7 | fveq2 6891 | . . . . . . . . . 10 β’ (π¦ = π₯ β (πΉβπ¦) = (πΉβπ₯)) | |
8 | 7 | breq1d 5158 | . . . . . . . . 9 β’ (π¦ = π₯ β ((πΉβπ¦) < π β (πΉβπ₯) < π)) |
9 | 8 | cbvrabv 3442 | . . . . . . . 8 β’ {π¦ β π· β£ (πΉβπ¦) < π} = {π₯ β π· β£ (πΉβπ₯) < π} |
10 | 9 | eleq1i 2824 | . . . . . . 7 β’ ({π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) |
11 | 10 | a1i 11 | . . . . . 6 β’ (π = π β ({π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
12 | 6, 11 | bitrd 278 | . . . . 5 β’ (π = π β ({π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
13 | 12 | cbvralvw 3234 | . . . 4 β’ (βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) |
14 | 13 | 3anbi3i 1159 | . . 3 β’ ((π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·)) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
15 | 14 | a1i 11 | . 2 β’ (π β ((π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·)) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
16 | 3, 15 | bitrd 278 | 1 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β wss 3948 βͺ cuni 4908 class class class wbr 5148 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcr 11108 < clt 11247 βΎt crest 17365 SAlgcsalg 45014 SMblFncsmblfn 45401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ioo 13327 df-ico 13329 df-smblfn 45402 |
This theorem is referenced by: smfpreimalt 45437 smff 45438 smfdmss 45439 issmff 45440 issmfd 45441 issmflelem 45450 issmfgtlem 45461 issmfgelem 45475 |
Copyright terms: Public domain | W3C validator |