Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmf Structured version   Visualization version   GIF version

Theorem issmf 46713
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmf.s (𝜑𝑆 ∈ SAlg)
issmf.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmf (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmf
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmf.s . . 3 (𝜑𝑆 ∈ SAlg)
2 issmf.d . . 3 𝐷 = dom 𝐹
31, 2issmflem 46712 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷))))
4 breq2 5096 . . . . . . . 8 (𝑏 = 𝑎 → ((𝐹𝑦) < 𝑏 ↔ (𝐹𝑦) < 𝑎))
54rabbidv 3402 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} = {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎})
65eleq1d 2813 . . . . . 6 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷)))
7 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
87breq1d 5102 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑦) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
98cbvrabv 3405 . . . . . . . 8 {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎}
109eleq1i 2819 . . . . . . 7 ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
1110a1i 11 . . . . . 6 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
126, 11bitrd 279 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
1312cbvralvw 3207 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
14133anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
1514a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
163, 15bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  wss 3903   cuni 4858   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cr 11008   < clt 11149  t crest 17324  SAlgcsalg 46293  SMblFncsmblfn 46680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-ioo 13252  df-ico 13254  df-smblfn 46681
This theorem is referenced by:  smfpreimalt  46716  smff  46717  smfdmss  46718  issmff  46719  issmfd  46720  issmflelem  46729  issmfgtlem  46740  issmfgelem  46754
  Copyright terms: Public domain W3C validator