Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmf Structured version   Visualization version   GIF version

Theorem issmf 46699
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmf.s (𝜑𝑆 ∈ SAlg)
issmf.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmf (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmf
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmf.s . . 3 (𝜑𝑆 ∈ SAlg)
2 issmf.d . . 3 𝐷 = dom 𝐹
31, 2issmflem 46698 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷))))
4 breq2 5106 . . . . . . . 8 (𝑏 = 𝑎 → ((𝐹𝑦) < 𝑏 ↔ (𝐹𝑦) < 𝑎))
54rabbidv 3410 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} = {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎})
65eleq1d 2813 . . . . . 6 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷)))
7 fveq2 6840 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
87breq1d 5112 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐹𝑦) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
98cbvrabv 3413 . . . . . . . 8 {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎}
109eleq1i 2819 . . . . . . 7 ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
1110a1i 11 . . . . . 6 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
126, 11bitrd 279 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
1312cbvralvw 3213 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
14133anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
1514a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑏} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
163, 15bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911   cuni 4867   class class class wbr 5102  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cr 11043   < clt 11184  t crest 17359  SAlgcsalg 46279  SMblFncsmblfn 46666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ioo 13286  df-ico 13288  df-smblfn 46667
This theorem is referenced by:  smfpreimalt  46702  smff  46703  smfdmss  46704  issmff  46705  issmfd  46706  issmflelem  46715  issmfgtlem  46726  issmfgelem  46740
  Copyright terms: Public domain W3C validator