| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmf | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmf.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| issmf | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | issmf.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 3 | 1, 2 | issmflem 46712 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
| 4 | breq2 5096 | . . . . . . . 8 ⊢ (𝑏 = 𝑎 → ((𝐹‘𝑦) < 𝑏 ↔ (𝐹‘𝑦) < 𝑎)) | |
| 5 | 4 | rabbidv 3402 | . . . . . . 7 ⊢ (𝑏 = 𝑎 → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} = {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎}) |
| 6 | 5 | eleq1d 2813 | . . . . . 6 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 7 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 8 | 7 | breq1d 5102 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
| 9 | 8 | cbvrabv 3405 | . . . . . . . 8 ⊢ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} |
| 10 | 9 | eleq1i 2819 | . . . . . . 7 ⊢ ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 12 | 6, 11 | bitrd 279 | . . . . 5 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 13 | 12 | cbvralvw 3207 | . . . 4 ⊢ (∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| 14 | 13 | 3anbi3i 1159 | . . 3 ⊢ ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| 16 | 3, 15 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ⊆ wss 3903 ∪ cuni 4858 class class class wbr 5092 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 < clt 11149 ↾t crest 17324 SAlgcsalg 46293 SMblFncsmblfn 46680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioo 13252 df-ico 13254 df-smblfn 46681 |
| This theorem is referenced by: smfpreimalt 46716 smff 46717 smfdmss 46718 issmff 46719 issmfd 46720 issmflelem 46729 issmfgtlem 46740 issmfgelem 46754 |
| Copyright terms: Public domain | W3C validator |