| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfbas2 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| isfbas2 | ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfbas 23716 | . 2 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 2 | elin 3930 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦))) | |
| 3 | velpw 4568 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦)) | |
| 4 | 3 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 5 | 2, 4 | bitri 275 | . . . . . . 7 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 6 | 5 | exbii 1848 | . . . . . 6 ⊢ (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 7 | n0 4316 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
| 8 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
| 10 | 9 | 2ralbii 3108 | . . . 4 ⊢ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
| 11 | 10 | 3anbi3i 1159 | . . 3 ⊢ ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 12 | 11 | anbi2i 623 | . 2 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
| 13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ‘cfv 6511 fBascfbas 21252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-fbas 21261 |
| This theorem is referenced by: fbasssin 23723 fbun 23727 opnfbas 23729 isfil2 23743 fsubbas 23754 fbasrn 23771 rnelfmlem 23839 metustfbas 24445 tailfb 36365 |
| Copyright terms: Public domain | W3C validator |