MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas2 Structured version   Visualization version   GIF version

Theorem isfbas2 23559
Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
isfbas2 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem isfbas2
StepHypRef Expression
1 isfbas 23553 . 2 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2 elin 3964 . . . . . . . 8 (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ∈ 𝒫 (𝑥𝑦)))
3 velpw 4607 . . . . . . . . 9 (𝑧 ∈ 𝒫 (𝑥𝑦) ↔ 𝑧 ⊆ (𝑥𝑦))
43anbi2i 623 . . . . . . . 8 ((𝑧𝐹𝑧 ∈ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
52, 4bitri 274 . . . . . . 7 (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
65exbii 1850 . . . . . 6 (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑧(𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
7 n0 4346 . . . . . 6 ((𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)))
8 df-rex 3071 . . . . . 6 (∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦) ↔ ∃𝑧(𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
96, 7, 83bitr4i 302 . . . . 5 ((𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
1092ralbii 3128 . . . 4 (∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
11103anbi3i 1159 . . 3 ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
1211anbi2i 623 . 2 ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))))
131, 12bitrdi 286 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wex 1781  wcel 2106  wne 2940  wnel 3046  wral 3061  wrex 3070  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  cfv 6543  fBascfbas 21132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-fbas 21141
This theorem is referenced by:  fbasssin  23560  fbun  23564  opnfbas  23566  isfil2  23580  fsubbas  23591  fbasrn  23608  rnelfmlem  23676  metustfbas  24286  tailfb  35565
  Copyright terms: Public domain W3C validator