| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfbas2 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| isfbas2 | ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfbas 23745 | . 2 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 2 | elin 3918 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦))) | |
| 3 | velpw 4555 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦)) | |
| 4 | 3 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 5 | 2, 4 | bitri 275 | . . . . . . 7 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 6 | 5 | exbii 1849 | . . . . . 6 ⊢ (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 7 | n0 4303 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
| 8 | df-rex 3057 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
| 10 | 9 | 2ralbii 3107 | . . . 4 ⊢ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
| 11 | 10 | 3anbi3i 1159 | . . 3 ⊢ ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 12 | 11 | anbi2i 623 | . 2 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
| 13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ‘cfv 6481 fBascfbas 21280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-fbas 21289 |
| This theorem is referenced by: fbasssin 23752 fbun 23756 opnfbas 23758 isfil2 23772 fsubbas 23783 fbasrn 23800 rnelfmlem 23868 metustfbas 24473 tailfb 36417 |
| Copyright terms: Public domain | W3C validator |