| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfbas2 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| isfbas2 | ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfbas 23745 | . 2 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 2 | elin 3914 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦))) | |
| 3 | velpw 4554 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦)) | |
| 4 | 3 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 5 | 2, 4 | bitri 275 | . . . . . . 7 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 6 | 5 | exbii 1849 | . . . . . 6 ⊢ (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 7 | n0 4302 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
| 8 | df-rex 3058 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
| 10 | 9 | 2ralbii 3108 | . . . 4 ⊢ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
| 11 | 10 | 3anbi3i 1159 | . . 3 ⊢ ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
| 12 | 11 | anbi2i 623 | . 2 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
| 13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∉ wnel 3033 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 ‘cfv 6486 fBascfbas 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-fbas 21290 |
| This theorem is referenced by: fbasssin 23752 fbun 23756 opnfbas 23758 isfil2 23772 fsubbas 23783 fbasrn 23800 rnelfmlem 23868 metustfbas 24473 tailfb 36442 |
| Copyright terms: Public domain | W3C validator |