![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfbas2 | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
isfbas2 | ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfbas 23707 | . 2 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
2 | elin 3960 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦))) | |
3 | velpw 4603 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦)) | |
4 | 3 | anbi2i 622 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
5 | 2, 4 | bitri 275 | . . . . . . 7 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
6 | 5 | exbii 1843 | . . . . . 6 ⊢ (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
7 | n0 4342 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
8 | df-rex 3066 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) | |
9 | 6, 7, 8 | 3bitr4i 303 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
10 | 9 | 2ralbii 3123 | . . . 4 ⊢ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
11 | 10 | 3anbi3i 1157 | . . 3 ⊢ ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
12 | 11 | anbi2i 622 | . 2 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∉ wnel 3041 ∀wral 3056 ∃wrex 3065 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4598 ‘cfv 6542 fBascfbas 21247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-fbas 21256 |
This theorem is referenced by: fbasssin 23714 fbun 23718 opnfbas 23720 isfil2 23734 fsubbas 23745 fbasrn 23762 rnelfmlem 23830 metustfbas 24440 tailfb 35784 |
Copyright terms: Public domain | W3C validator |