Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfbas2 | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
isfbas2 | ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfbas 22583 | . 2 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
2 | elin 3860 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦))) | |
3 | velpw 4494 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ 𝑧 ⊆ (𝑥 ∩ 𝑦)) | |
4 | 3 | anbi2i 626 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
5 | 2, 4 | bitri 278 | . . . . . . 7 ⊢ (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
6 | 5 | exbii 1854 | . . . . . 6 ⊢ (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
7 | n0 4236 | . . . . . 6 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
8 | df-rex 3060 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ ∃𝑧(𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ (𝑥 ∩ 𝑦))) | |
9 | 6, 7, 8 | 3bitr4i 306 | . . . . 5 ⊢ ((𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
10 | 9 | 2ralbii 3082 | . . . 4 ⊢ (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
11 | 10 | 3anbi3i 1160 | . . 3 ⊢ ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
12 | 11 | anbi2i 626 | . 2 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)))) |
13 | 1, 12 | bitrdi 290 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 ∃wex 1786 ∈ wcel 2114 ≠ wne 2935 ∉ wnel 3039 ∀wral 3054 ∃wrex 3055 ∩ cin 3843 ⊆ wss 3844 ∅c0 4212 𝒫 cpw 4489 ‘cfv 6340 fBascfbas 20208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fv 6348 df-fbas 20217 |
This theorem is referenced by: fbasssin 22590 fbun 22594 opnfbas 22596 isfil2 22610 fsubbas 22621 fbasrn 22638 rnelfmlem 22706 metustfbas 23313 tailfb 34212 |
Copyright terms: Public domain | W3C validator |