MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas2 Structured version   Visualization version   GIF version

Theorem isfbas2 23751
Description: The predicate "𝐹 is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
isfbas2 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem isfbas2
StepHypRef Expression
1 isfbas 23745 . 2 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2 elin 3918 . . . . . . . 8 (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ∈ 𝒫 (𝑥𝑦)))
3 velpw 4555 . . . . . . . . 9 (𝑧 ∈ 𝒫 (𝑥𝑦) ↔ 𝑧 ⊆ (𝑥𝑦))
43anbi2i 623 . . . . . . . 8 ((𝑧𝐹𝑧 ∈ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
52, 4bitri 275 . . . . . . 7 (𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
65exbii 1849 . . . . . 6 (∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑧(𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
7 n0 4303 . . . . . 6 ((𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹 ∩ 𝒫 (𝑥𝑦)))
8 df-rex 3057 . . . . . 6 (∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦) ↔ ∃𝑧(𝑧𝐹𝑧 ⊆ (𝑥𝑦)))
96, 7, 83bitr4i 303 . . . . 5 ((𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
1092ralbii 3107 . . . 4 (∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
11103anbi3i 1159 . . 3 ((𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
1211anbi2i 623 . 2 ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))))
131, 12bitrdi 287 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2111  wne 2928  wnel 3032  wral 3047  wrex 3056  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  cfv 6481  fBascfbas 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-fbas 21289
This theorem is referenced by:  fbasssin  23752  fbun  23756  opnfbas  23758  isfil2  23772  fsubbas  23783  fbasrn  23800  rnelfmlem  23868  metustfbas  24473  tailfb  36417
  Copyright terms: Public domain W3C validator