Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgt Structured version   Visualization version   GIF version

Theorem issmfgt 46747
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgt.s (𝜑𝑆 ∈ SAlg)
issmfgt.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfgt (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfgt
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfgt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfgt.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46724 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46723 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1914 . . . . . . 7 𝑏𝜑
8 nfv 1914 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1899 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
102, 5restuni4 45108 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) = 𝐷)
1110eqcomd 2735 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 = (𝑆t 𝐷))
1211rabeqdv 3418 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
1312adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
14 nfv 1914 . . . . . . . . . . 11 𝑦𝜑
15 nfv 1914 . . . . . . . . . . 11 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1614, 15nfan 1899 . . . . . . . . . 10 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
17 nfv 1914 . . . . . . . . . 10 𝑦 𝑏 ∈ ℝ
1816, 17nfan 1899 . . . . . . . . 9 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
19 nfv 1914 . . . . . . . . 9 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
201uniexd 7698 . . . . . . . . . . . . . 14 (𝜑 𝑆 ∈ V)
2120adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
22 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
2321, 22ssexd 5274 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
245, 23syldan 591 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
25 eqid 2729 . . . . . . . . . . 11 (𝑆t 𝐷) = (𝑆t 𝐷)
262, 24, 25subsalsal 46350 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2726adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
28 eqid 2729 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
296adantr 480 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦 (𝑆t 𝐷))
3110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
3230, 31eleqtrd 2830 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦𝐷)
3329, 32ffvelcdmd 7039 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ)
3433rexrd 11200 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
3534adantlr 715 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
362, 4issmfle 46736 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))))
373, 36mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
3837simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
3910rabeqdv 3418 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐})
4039eleq1d 2813 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ({𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4140ralbidv 3156 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4238, 41mpbird 257 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4342adantr 480 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
44 simpr 484 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
45 rspa 3224 . . . . . . . . . . 11 ((∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4643, 44, 45syl2anc 584 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4746adantlr 715 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
48 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4918, 19, 27, 28, 35, 47, 48salpreimalegt 46700 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5013, 49eqeltrd 2828 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5150ex 412 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
529, 51ralrimi 3233 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
535, 6, 523jca 1128 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
5453ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
55 nfv 1914 . . . . . . 7 𝑦 𝐷 𝑆
56 nfv 1914 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
57 nfcv 2891 . . . . . . . 8 𝑦
58 nfrab1 3423 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)}
59 nfcv 2891 . . . . . . . . 9 𝑦(𝑆t 𝐷)
6058, 59nfel 2906 . . . . . . . 8 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6157, 60nfralw 3283 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6255, 56, 61nf3an 1901 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
6314, 62nfan 1899 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
64 nfv 1914 . . . . . . 7 𝑏 𝐷 𝑆
65 nfv 1914 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
66 nfra1 3259 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6764, 65, 66nf3an 1901 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
687, 67nfan 1899 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
691adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
70 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
71 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
72 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
7363, 68, 69, 4, 70, 71, 72issmfgtlem 46746 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
7473ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
7554, 74impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
76 breq1 5105 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑦)))
7776rabbidv 3410 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦𝐷𝑎 < (𝐹𝑦)})
78 fveq2 6840 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7978breq2d 5114 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑥)))
8079cbvrabv 3413 . . . . . . . 8 {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)}
8180a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8277, 81eqtrd 2764 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8382eleq1d 2813 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8483cbvralvw 3213 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
85843anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8685a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
8775, 86bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  wss 3911   cuni 4867   class class class wbr 5102  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  *cxr 11183   < clt 11184  cle 11185  t crest 17359  SAlgcsalg 46299  SMblFncsmblfn 46686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ioo 13286  df-ico 13288  df-fl 13730  df-rest 17361  df-salg 46300  df-smblfn 46687
This theorem is referenced by:  issmfgtd  46752  smfpreimagt  46753
  Copyright terms: Public domain W3C validator