Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgt Structured version   Visualization version   GIF version

Theorem issmfgt 43756
 Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgt.s (𝜑𝑆 ∈ SAlg)
issmfgt.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfgt (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfgt
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfgt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 488 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfgt.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 43733 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 43732 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1915 . . . . . . 7 𝑏𝜑
8 nfv 1915 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1900 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
102, 5restuni4 42129 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) = 𝐷)
1110eqcomd 2764 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 = (𝑆t 𝐷))
1211rabeqdv 3397 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
1312adantr 484 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
14 nfv 1915 . . . . . . . . . . 11 𝑦𝜑
15 nfv 1915 . . . . . . . . . . 11 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1614, 15nfan 1900 . . . . . . . . . 10 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
17 nfv 1915 . . . . . . . . . 10 𝑦 𝑏 ∈ ℝ
1816, 17nfan 1900 . . . . . . . . 9 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
19 nfv 1915 . . . . . . . . 9 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
201uniexd 7466 . . . . . . . . . . . . . 14 (𝜑 𝑆 ∈ V)
2120adantr 484 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
22 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
2321, 22ssexd 5194 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
245, 23syldan 594 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
25 eqid 2758 . . . . . . . . . . 11 (𝑆t 𝐷) = (𝑆t 𝐷)
262, 24, 25subsalsal 43365 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2726adantr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
28 eqid 2758 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
296adantr 484 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
30 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦 (𝑆t 𝐷))
3110adantr 484 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
3230, 31eleqtrd 2854 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦𝐷)
3329, 32ffvelrnd 6843 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ)
3433rexrd 10729 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
3534adantlr 714 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
362, 4issmfle 43745 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))))
373, 36mpbid 235 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
3837simp3d 1141 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
3910rabeqdv 3397 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐})
4039eleq1d 2836 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ({𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4140ralbidv 3126 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4238, 41mpbird 260 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4342adantr 484 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
44 simpr 488 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
45 rspa 3135 . . . . . . . . . . 11 ((∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4643, 44, 45syl2anc 587 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4746adantlr 714 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
48 simpr 488 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4918, 19, 27, 28, 35, 47, 48salpreimalegt 43711 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5013, 49eqeltrd 2852 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5150ex 416 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
529, 51ralrimi 3144 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
535, 6, 523jca 1125 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
5453ex 416 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
55 nfv 1915 . . . . . . 7 𝑦 𝐷 𝑆
56 nfv 1915 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
57 nfcv 2919 . . . . . . . 8 𝑦
58 nfrab1 3302 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)}
59 nfcv 2919 . . . . . . . . 9 𝑦(𝑆t 𝐷)
6058, 59nfel 2933 . . . . . . . 8 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6157, 60nfralw 3153 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6255, 56, 61nf3an 1902 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
6314, 62nfan 1900 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
64 nfv 1915 . . . . . . 7 𝑏 𝐷 𝑆
65 nfv 1915 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
66 nfra1 3147 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6764, 65, 66nf3an 1902 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
687, 67nfan 1900 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
691adantr 484 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
70 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
71 simpr2 1192 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
72 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
7363, 68, 69, 4, 70, 71, 72issmfgtlem 43755 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
7473ex 416 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
7554, 74impbid 215 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
76 breq1 5035 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑦)))
7776rabbidv 3392 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦𝐷𝑎 < (𝐹𝑦)})
78 fveq2 6658 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7978breq2d 5044 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑥)))
8079cbvrabv 3404 . . . . . . . 8 {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)}
8180a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8277, 81eqtrd 2793 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8382eleq1d 2836 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8483cbvralvw 3361 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
85843anbi3i 1156 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8685a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
8775, 86bitrd 282 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  {crab 3074  Vcvv 3409   ⊆ wss 3858  ∪ cuni 4798   class class class wbr 5032  dom cdm 5524  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ℝcr 10574  ℝ*cxr 10712   < clt 10713   ≤ cle 10714   ↾t crest 16752  SAlgcsalg 43316  SMblFncsmblfn 43700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-ac2 9923  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-card 9401  df-acn 9404  df-ac 9576  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-q 12389  df-rp 12431  df-ioo 12783  df-ico 12785  df-fl 13211  df-rest 16754  df-salg 43317  df-smblfn 43701 This theorem is referenced by:  issmfgtd  43760  smfpreimagt  43761
 Copyright terms: Public domain W3C validator