Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgt Structured version   Visualization version   GIF version

Theorem issmfgt 46747
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgt.s (𝜑𝑆 ∈ SAlg)
issmfgt.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfgt (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfgt
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfgt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfgt.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46724 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46723 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1914 . . . . . . 7 𝑏𝜑
8 nfv 1914 . . . . . . 7 𝑏 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1899 . . . . . 6 𝑏(𝜑𝐹 ∈ (SMblFn‘𝑆))
102, 5restuni4 45109 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) = 𝐷)
1110eqcomd 2735 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 = (𝑆t 𝐷))
1211rabeqdv 3410 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
1312adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)})
14 nfv 1914 . . . . . . . . . . 11 𝑦𝜑
15 nfv 1914 . . . . . . . . . . 11 𝑦 𝐹 ∈ (SMblFn‘𝑆)
1614, 15nfan 1899 . . . . . . . . . 10 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
17 nfv 1914 . . . . . . . . . 10 𝑦 𝑏 ∈ ℝ
1816, 17nfan 1899 . . . . . . . . 9 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
19 nfv 1914 . . . . . . . . 9 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
201uniexd 7678 . . . . . . . . . . . . . 14 (𝜑 𝑆 ∈ V)
2120adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
22 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
2321, 22ssexd 5263 . . . . . . . . . . . 12 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
245, 23syldan 591 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
25 eqid 2729 . . . . . . . . . . 11 (𝑆t 𝐷) = (𝑆t 𝐷)
262, 24, 25subsalsal 46350 . . . . . . . . . 10 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2726adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
28 eqid 2729 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
296adantr 480 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝐹:𝐷⟶ℝ)
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦 (𝑆t 𝐷))
3110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝑆t 𝐷) = 𝐷)
3230, 31eleqtrd 2830 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → 𝑦𝐷)
3329, 32ffvelcdmd 7019 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ)
3433rexrd 11165 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
3534adantlr 715 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦 (𝑆t 𝐷)) → (𝐹𝑦) ∈ ℝ*)
362, 4issmfle 46736 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))))
373, 36mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
3837simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
3910rabeqdv 3410 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} = {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐})
4039eleq1d 2813 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ({𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4140ralbidv 3152 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ↔ ∀𝑐 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷)))
4238, 41mpbird 257 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4342adantr 480 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → ∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
44 simpr 484 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
45 rspa 3218 . . . . . . . . . . 11 ((∀𝑐 ∈ ℝ {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4643, 44, 45syl2anc 584 . . . . . . . . . 10 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
4746adantlr 715 . . . . . . . . 9 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ (𝐹𝑦) ≤ 𝑐} ∈ (𝑆t 𝐷))
48 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
4918, 19, 27, 28, 35, 47, 48salpreimalegt 46700 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦 (𝑆t 𝐷) ∣ 𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5013, 49eqeltrd 2828 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
5150ex 412 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑏 ∈ ℝ → {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
529, 51ralrimi 3227 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
535, 6, 523jca 1128 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
5453ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
55 nfv 1914 . . . . . . 7 𝑦 𝐷 𝑆
56 nfv 1914 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
57 nfcv 2891 . . . . . . . 8 𝑦
58 nfrab1 3415 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)}
59 nfcv 2891 . . . . . . . . 9 𝑦(𝑆t 𝐷)
6058, 59nfel 2906 . . . . . . . 8 𝑦{𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6157, 60nfralw 3276 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6255, 56, 61nf3an 1901 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
6314, 62nfan 1899 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
64 nfv 1914 . . . . . . 7 𝑏 𝐷 𝑆
65 nfv 1914 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
66 nfra1 3253 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)
6764, 65, 66nf3an 1901 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
687, 67nfan 1899 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)))
691adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
70 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
71 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
72 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
7363, 68, 69, 4, 70, 71, 72issmfgtlem 46746 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
7473ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
7554, 74impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷))))
76 breq1 5095 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑦)))
7776rabbidv 3402 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑦𝐷𝑎 < (𝐹𝑦)})
78 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7978breq2d 5104 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 < (𝐹𝑦) ↔ 𝑎 < (𝐹𝑥)))
8079cbvrabv 3405 . . . . . . . 8 {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)}
8180a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8277, 81eqtrd 2764 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 < (𝐹𝑦)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
8382eleq1d 2813 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8483cbvralvw 3207 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
85843anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
8685a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 < (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
8775, 86bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  wss 3903   cuni 4858   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  *cxr 11148   < clt 11149  cle 11150  t crest 17324  SAlgcsalg 46299  SMblFncsmblfn 46686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ioo 13252  df-ico 13254  df-fl 13696  df-rest 17326  df-salg 46300  df-smblfn 46687
This theorem is referenced by:  issmfgtd  46752  smfpreimagt  46753
  Copyright terms: Public domain W3C validator