![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmbr3v | Structured version Visualization version GIF version |
Description: Express the binary relation "sequence πΉ converges to point π " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
lmbr3v.1 | β’ (π β π½ β (TopOnβπ)) |
Ref | Expression |
---|---|
lmbr3v | β’ (π β (πΉ(βπ‘βπ½)π β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmbr3v.1 | . . 3 β’ (π β π½ β (TopOnβπ)) | |
2 | eqid 2733 | . . 3 β’ (β€β₯β0) = (β€β₯β0) | |
3 | 0zd 12570 | . . 3 β’ (π β 0 β β€) | |
4 | 1, 2, 3 | lmbr2 22763 | . 2 β’ (π β (πΉ(βπ‘βπ½)π β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β (β€β₯β0)βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))))) |
5 | 0z 12569 | . . . . . 6 β’ 0 β β€ | |
6 | 2 | rexuz3 15295 | . . . . . 6 β’ (0 β β€ β (βπ β (β€β₯β0)βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’) β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))) |
7 | 5, 6 | ax-mp 5 | . . . . 5 β’ (βπ β (β€β₯β0)βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’) β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)) |
8 | 7 | imbi2i 336 | . . . 4 β’ ((π β π’ β βπ β (β€β₯β0)βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)) β (π β π’ β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))) |
9 | 8 | ralbii 3094 | . . 3 β’ (βπ’ β π½ (π β π’ β βπ β (β€β₯β0)βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)) β βπ’ β π½ (π β π’ β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))) |
10 | 9 | 3anbi3i 1160 | . 2 β’ ((πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β (β€β₯β0)βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))) β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’)))) |
11 | 4, 10 | bitrdi 287 | 1 β’ (π β (πΉ(βπ‘βπ½)π β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ β β€ βπ β (β€β₯βπ)(π β dom πΉ β§ (πΉβπ) β π’))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 β wcel 2107 βwral 3062 βwrex 3071 class class class wbr 5149 dom cdm 5677 βcfv 6544 (class class class)co 7409 βpm cpm 8821 βcc 11108 0cc0 11110 β€cz 12558 β€β₯cuz 12822 TopOnctopon 22412 βπ‘clm 22730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-addrcl 11171 ax-rnegex 11181 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-neg 11447 df-z 12559 df-uz 12823 df-top 22396 df-topon 22413 df-lm 22733 |
This theorem is referenced by: lmbr3 44463 |
Copyright terms: Public domain | W3C validator |