Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmbr3 Structured version   Visualization version   GIF version

Theorem lmbr3 45668
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
lmbr3.1 𝑘𝐹
lmbr3.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
lmbr3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑢,𝑃   𝑗,𝑘,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑋(𝑢,𝑗,𝑘)

Proof of Theorem lmbr3
Dummy variables 𝑖 𝑙 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr3.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr3v 45666 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)))))
3 eleq2w 2828 . . . . 5 (𝑣 = 𝑢 → (𝑃𝑣𝑃𝑢))
4 eleq2w 2828 . . . . . . . 8 (𝑣 = 𝑢 → ((𝐹𝑙) ∈ 𝑣 ↔ (𝐹𝑙) ∈ 𝑢))
54anbi2d 629 . . . . . . 7 (𝑣 = 𝑢 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ (𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
65rexralbidv 3229 . . . . . 6 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
7 fveq2 6920 . . . . . . . . 9 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3334 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
9 nfcv 2908 . . . . . . . . . . 11 𝑘𝑙
10 lmbr3.1 . . . . . . . . . . . 12 𝑘𝐹
1110nfdm 5976 . . . . . . . . . . 11 𝑘dom 𝐹
129, 11nfel 2923 . . . . . . . . . 10 𝑘 𝑙 ∈ dom 𝐹
1310, 9nffv 6930 . . . . . . . . . . 11 𝑘(𝐹𝑙)
14 nfcv 2908 . . . . . . . . . . 11 𝑘𝑢
1513, 14nfel 2923 . . . . . . . . . 10 𝑘(𝐹𝑙) ∈ 𝑢
1612, 15nfan 1898 . . . . . . . . 9 𝑘(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)
17 nfv 1913 . . . . . . . . 9 𝑙(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)
18 eleq1w 2827 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
19 fveq2 6920 . . . . . . . . . . 11 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2019eleq1d 2829 . . . . . . . . . 10 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2118, 20anbi12d 631 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2216, 17, 21cbvralw 3312 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
238, 22bitrdi 287 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2423cbvrexvw 3244 . . . . . 6 (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
256, 24bitrdi 287 . . . . 5 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
263, 25imbi12d 344 . . . 4 (𝑣 = 𝑢 → ((𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2726cbvralvw 3243 . . 3 (∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
28273anbi3i 1159 . 2 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
292, 28bitrdi 287 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wnfc 2893  wral 3067  wrex 3076   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182  cz 12639  cuz 12903  TopOnctopon 22937  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-top 22921  df-topon 22938  df-lm 23258
This theorem is referenced by:  xlimbr  45748  xlimmnfvlem1  45753  xlimmnfvlem2  45754  xlimpnfvlem1  45757  xlimpnfvlem2  45758
  Copyright terms: Public domain W3C validator