Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmbr3 Structured version   Visualization version   GIF version

Theorem lmbr3 45745
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
lmbr3.1 𝑘𝐹
lmbr3.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
lmbr3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑢,𝑃   𝑗,𝑘,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑋(𝑢,𝑗,𝑘)

Proof of Theorem lmbr3
Dummy variables 𝑖 𝑙 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr3.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr3v 45743 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)))))
3 eleq2w 2812 . . . . 5 (𝑣 = 𝑢 → (𝑃𝑣𝑃𝑢))
4 eleq2w 2812 . . . . . . . 8 (𝑣 = 𝑢 → ((𝐹𝑙) ∈ 𝑣 ↔ (𝐹𝑙) ∈ 𝑢))
54anbi2d 630 . . . . . . 7 (𝑣 = 𝑢 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ (𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
65rexralbidv 3203 . . . . . 6 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
7 fveq2 6858 . . . . . . . . 9 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3299 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
9 nfcv 2891 . . . . . . . . . . 11 𝑘𝑙
10 lmbr3.1 . . . . . . . . . . . 12 𝑘𝐹
1110nfdm 5915 . . . . . . . . . . 11 𝑘dom 𝐹
129, 11nfel 2906 . . . . . . . . . 10 𝑘 𝑙 ∈ dom 𝐹
1310, 9nffv 6868 . . . . . . . . . . 11 𝑘(𝐹𝑙)
14 nfcv 2891 . . . . . . . . . . 11 𝑘𝑢
1513, 14nfel 2906 . . . . . . . . . 10 𝑘(𝐹𝑙) ∈ 𝑢
1612, 15nfan 1899 . . . . . . . . 9 𝑘(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)
17 nfv 1914 . . . . . . . . 9 𝑙(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)
18 eleq1w 2811 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
19 fveq2 6858 . . . . . . . . . . 11 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2019eleq1d 2813 . . . . . . . . . 10 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2118, 20anbi12d 632 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2216, 17, 21cbvralw 3280 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
238, 22bitrdi 287 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2423cbvrexvw 3216 . . . . . 6 (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
256, 24bitrdi 287 . . . . 5 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
263, 25imbi12d 344 . . . 4 (𝑣 = 𝑢 → ((𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2726cbvralvw 3215 . . 3 (∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
28273anbi3i 1159 . 2 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
292, 28bitrdi 287 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  pm cpm 8800  cc 11066  cz 12529  cuz 12793  TopOnctopon 22797  𝑡clm 23113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-top 22781  df-topon 22798  df-lm 23116
This theorem is referenced by:  xlimbr  45825  xlimmnfvlem1  45830  xlimmnfvlem2  45831  xlimpnfvlem1  45834  xlimpnfvlem2  45835
  Copyright terms: Public domain W3C validator