| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2edg1 | Structured version Visualization version GIF version | ||
| Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgr2edg1 | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | usgrf1oedg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | umgr2edg 29112 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |
| 4 | 3anrot 1099 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ 𝑥 ≠ 𝑦)) | |
| 5 | df-ne 2926 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
| 6 | 5 | 3anbi3i 1159 | . . . . . . . 8 ⊢ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 7 | 4, 6 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 8 | df-3an 1088 | . . . . . . 7 ⊢ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) | |
| 9 | 7, 8 | bitri 275 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
| 10 | 9 | 2rexbii 3109 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
| 11 | 3, 10 | sylib 218 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
| 12 | rexanali 3084 | . . . . . 6 ⊢ (∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) | |
| 13 | 12 | rexbii 3076 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
| 14 | rexnal 3082 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) | |
| 15 | 13, 14 | bitri 275 | . . . 4 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
| 16 | 11, 15 | sylib 218 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
| 17 | 16 | intnand 488 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦))) |
| 18 | fveq2 6840 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐼‘𝑥) = (𝐼‘𝑦)) | |
| 19 | 18 | eleq2d 2814 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ (𝐼‘𝑥) ↔ 𝑁 ∈ (𝐼‘𝑦))) |
| 20 | 19 | reu4 3699 | . 2 ⊢ (∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ↔ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦))) |
| 21 | 17, 20 | sylnibr 329 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∃!wreu 3349 {cpr 4587 dom cdm 5631 ‘cfv 6499 iEdgciedg 28900 Edgcedg 28950 UMGraphcumgr 28984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-edg 28951 df-uhgr 28961 df-upgr 28985 df-umgr 28986 |
| This theorem is referenced by: usgr2edg1 29115 |
| Copyright terms: Public domain | W3C validator |