![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2edg1 | Structured version Visualization version GIF version |
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.) |
Ref | Expression |
---|---|
usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgr2edg1 | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrf1oedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | usgrf1oedg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | umgr2edg 26678 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |
4 | 3anrot 1093 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ 𝑥 ≠ 𝑦)) | |
5 | df-ne 2987 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
6 | 5 | 3anbi3i 1152 | . . . . . . . 8 ⊢ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
7 | 4, 6 | bitri 276 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
8 | df-3an 1082 | . . . . . . 7 ⊢ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) | |
9 | 7, 8 | bitri 276 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
10 | 9 | 2rexbii 3214 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
11 | 3, 10 | sylib 219 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
12 | rexanali 3231 | . . . . . 6 ⊢ (∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) | |
13 | 12 | rexbii 3213 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
14 | rexnal 3204 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) | |
15 | 13, 14 | bitri 276 | . . . 4 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
16 | 11, 15 | sylib 219 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
17 | 16 | intnand 489 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦))) |
18 | fveq2 6545 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐼‘𝑥) = (𝐼‘𝑦)) | |
19 | 18 | eleq2d 2870 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ (𝐼‘𝑥) ↔ 𝑁 ∈ (𝐼‘𝑦))) |
20 | 19 | reu4 3661 | . 2 ⊢ (∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ↔ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦))) |
21 | 17, 20 | sylnibr 330 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ∀wral 3107 ∃wrex 3108 ∃!wreu 3109 {cpr 4480 dom cdm 5450 ‘cfv 6232 iEdgciedg 26469 Edgcedg 26519 UMGraphcumgr 26553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-dju 9183 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-hash 13545 df-edg 26520 df-uhgr 26530 df-upgr 26554 df-umgr 26555 |
This theorem is referenced by: usgr2edg1 26681 |
Copyright terms: Public domain | W3C validator |