MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2edg1 Structured version   Visualization version   GIF version

Theorem umgr2edg1 28976
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2edg1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑁
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem umgr2edg1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 usgrf1oedg.i . . . . . 6 𝐼 = (iEdg‘𝐺)
2 usgrf1oedg.e . . . . . 6 𝐸 = (Edg‘𝐺)
31, 2umgr2edg 28974 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
4 3anrot 1097 . . . . . . . 8 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ 𝑥𝑦))
5 df-ne 2935 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
653anbi3i 1156 . . . . . . . 8 ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ 𝑥𝑦) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦))
74, 6bitri 275 . . . . . . 7 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦))
8 df-3an 1086 . . . . . . 7 ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
97, 8bitri 275 . . . . . 6 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
1092rexbii 3123 . . . . 5 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
113, 10sylib 217 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
12 rexanali 3096 . . . . . 6 (∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1312rexbii 3088 . . . . 5 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
14 rexnal 3094 . . . . 5 (∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1513, 14bitri 275 . . . 4 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1611, 15sylib 217 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1716intnand 488 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦)))
18 fveq2 6885 . . . 4 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
1918eleq2d 2813 . . 3 (𝑥 = 𝑦 → (𝑁 ∈ (𝐼𝑥) ↔ 𝑁 ∈ (𝐼𝑦)))
2019reu4 3722 . 2 (∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ↔ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦)))
2117, 20sylnibr 329 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  ∃!wreu 3368  {cpr 4625  dom cdm 5669  cfv 6537  iEdgciedg 28765  Edgcedg 28815  UMGraphcumgr 28849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-edg 28816  df-uhgr 28826  df-upgr 28850  df-umgr 28851
This theorem is referenced by:  usgr2edg1  28977
  Copyright terms: Public domain W3C validator