MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2edg1 Structured version   Visualization version   GIF version

Theorem umgr2edg1 28333
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2edg1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑁
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem umgr2edg1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 usgrf1oedg.i . . . . . 6 𝐼 = (iEdg‘𝐺)
2 usgrf1oedg.e . . . . . 6 𝐸 = (Edg‘𝐺)
31, 2umgr2edg 28331 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
4 3anrot 1100 . . . . . . . 8 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ 𝑥𝑦))
5 df-ne 2940 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
653anbi3i 1159 . . . . . . . 8 ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ 𝑥𝑦) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦))
74, 6bitri 274 . . . . . . 7 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦))
8 df-3an 1089 . . . . . . 7 ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
97, 8bitri 274 . . . . . 6 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
1092rexbii 3128 . . . . 5 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
113, 10sylib 217 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
12 rexanali 3101 . . . . . 6 (∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1312rexbii 3093 . . . . 5 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
14 rexnal 3099 . . . . 5 (∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1513, 14bitri 274 . . . 4 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1611, 15sylib 217 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1716intnand 489 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦)))
18 fveq2 6878 . . . 4 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
1918eleq2d 2818 . . 3 (𝑥 = 𝑦 → (𝑁 ∈ (𝐼𝑥) ↔ 𝑁 ∈ (𝐼𝑦)))
2019reu4 3723 . 2 (∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ↔ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦)))
2117, 20sylnibr 328 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  ∃!wreu 3373  {cpr 4624  dom cdm 5669  cfv 6532  iEdgciedg 28122  Edgcedg 28172  UMGraphcumgr 28206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-oadd 8452  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-hash 14273  df-edg 28173  df-uhgr 28183  df-upgr 28207  df-umgr 28208
This theorem is referenced by:  usgr2edg1  28334
  Copyright terms: Public domain W3C validator