MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2edg1 Structured version   Visualization version   GIF version

Theorem umgr2edg1 28465
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2edg1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑁
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem umgr2edg1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 usgrf1oedg.i . . . . . 6 𝐼 = (iEdg‘𝐺)
2 usgrf1oedg.e . . . . . 6 𝐸 = (Edg‘𝐺)
31, 2umgr2edg 28463 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
4 3anrot 1100 . . . . . . . 8 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ 𝑥𝑦))
5 df-ne 2941 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
653anbi3i 1159 . . . . . . . 8 ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ 𝑥𝑦) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦))
74, 6bitri 274 . . . . . . 7 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ (𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦))
8 df-3an 1089 . . . . . . 7 ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
97, 8bitri 274 . . . . . 6 ((𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ ((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
1092rexbii 3129 . . . . 5 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ↔ ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
113, 10sylib 217 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦))
12 rexanali 3102 . . . . . 6 (∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1312rexbii 3094 . . . . 5 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
14 rexnal 3100 . . . . 5 (∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1513, 14bitri 274 . . . 4 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1611, 15sylib 217 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦))
1716intnand 489 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦)))
18 fveq2 6891 . . . 4 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
1918eleq2d 2819 . . 3 (𝑥 = 𝑦 → (𝑁 ∈ (𝐼𝑥) ↔ 𝑁 ∈ (𝐼𝑦)))
2019reu4 3727 . 2 (∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ↔ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥) ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)) → 𝑥 = 𝑦)))
2117, 20sylnibr 328 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  ∃!wreu 3374  {cpr 4630  dom cdm 5676  cfv 6543  iEdgciedg 28254  Edgcedg 28304  UMGraphcumgr 28338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290  df-edg 28305  df-uhgr 28315  df-upgr 28339  df-umgr 28340
This theorem is referenced by:  usgr2edg1  28466
  Copyright terms: Public domain W3C validator