![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmff | Structured version Visualization version GIF version |
Description: The predicate "πΉ is a real-valued measurable function w.r.t. to the sigma-algebra π". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of πΉ is required to be a subset of the underlying set of π. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmff.x | β’ β²π₯πΉ |
issmff.s | β’ (π β π β SAlg) |
issmff.d | β’ π· = dom πΉ |
Ref | Expression |
---|---|
issmff | β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmff.s | . . 3 β’ (π β π β SAlg) | |
2 | issmff.d | . . 3 β’ π· = dom πΉ | |
3 | 1, 2 | issmf 45742 | . 2 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·)))) |
4 | nfcv 2901 | . . . . . . 7 β’ β²π¦π· | |
5 | issmff.x | . . . . . . . . 9 β’ β²π₯πΉ | |
6 | 5 | nfdm 5949 | . . . . . . . 8 β’ β²π₯dom πΉ |
7 | 2, 6 | nfcxfr 2899 | . . . . . . 7 β’ β²π₯π· |
8 | nfcv 2901 | . . . . . . . . 9 β’ β²π₯π¦ | |
9 | 5, 8 | nffv 6900 | . . . . . . . 8 β’ β²π₯(πΉβπ¦) |
10 | nfcv 2901 | . . . . . . . 8 β’ β²π₯ < | |
11 | nfcv 2901 | . . . . . . . 8 β’ β²π₯π | |
12 | 9, 10, 11 | nfbr 5194 | . . . . . . 7 β’ β²π₯(πΉβπ¦) < π |
13 | nfv 1915 | . . . . . . 7 β’ β²π¦(πΉβπ₯) < π | |
14 | fveq2 6890 | . . . . . . . 8 β’ (π¦ = π₯ β (πΉβπ¦) = (πΉβπ₯)) | |
15 | 14 | breq1d 5157 | . . . . . . 7 β’ (π¦ = π₯ β ((πΉβπ¦) < π β (πΉβπ₯) < π)) |
16 | 4, 7, 12, 13, 15 | cbvrabw 3465 | . . . . . 6 β’ {π¦ β π· β£ (πΉβπ¦) < π} = {π₯ β π· β£ (πΉβπ₯) < π} |
17 | 16 | eleq1i 2822 | . . . . 5 β’ ({π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) |
18 | 17 | ralbii 3091 | . . . 4 β’ (βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·) β βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) |
19 | 18 | 3anbi3i 1157 | . . 3 β’ ((π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·)) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
20 | 19 | a1i 11 | . 2 β’ (π β ((π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π¦ β π· β£ (πΉβπ¦) < π} β (π βΎt π·)) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
21 | 3, 20 | bitrd 278 | 1 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1085 = wceq 1539 β wcel 2104 β²wnfc 2881 βwral 3059 {crab 3430 β wss 3947 βͺ cuni 4907 class class class wbr 5147 dom cdm 5675 βΆwf 6538 βcfv 6542 (class class class)co 7411 βcr 11111 < clt 11252 βΎt crest 17370 SAlgcsalg 45322 SMblFncsmblfn 45709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13332 df-ico 13334 df-smblfn 45710 |
This theorem is referenced by: smfpreimaltf 45750 issmfdf 45751 |
Copyright terms: Public domain | W3C validator |