| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmff | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmff.x | ⊢ Ⅎ𝑥𝐹 |
| issmff.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmff.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| issmff | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmff.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | issmff.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 3 | 1, 2 | issmf 46853 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| 4 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑦𝐷 | |
| 5 | issmff.x | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 6 | 5 | nfdm 5897 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝐹 |
| 7 | 2, 6 | nfcxfr 2893 | . . . . . . 7 ⊢ Ⅎ𝑥𝐷 |
| 8 | nfcv 2895 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑦 | |
| 9 | 5, 8 | nffv 6840 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 10 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑥 < | |
| 11 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
| 12 | 9, 10, 11 | nfbr 5142 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) < 𝑎 |
| 13 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑦(𝐹‘𝑥) < 𝑎 | |
| 14 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 15 | 14 | breq1d 5105 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
| 16 | 4, 7, 12, 13, 15 | cbvrabw 3431 | . . . . . 6 ⊢ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} |
| 17 | 16 | eleq1i 2824 | . . . . 5 ⊢ ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| 18 | 17 | ralbii 3079 | . . . 4 ⊢ (∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| 19 | 18 | 3anbi3i 1159 | . . 3 ⊢ ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| 21 | 3, 20 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 < clt 11155 ↾t crest 17328 SAlgcsalg 46433 SMblFncsmblfn 46820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-ioo 13253 df-ico 13255 df-smblfn 46821 |
| This theorem is referenced by: smfpreimaltf 46861 issmfdf 46862 |
| Copyright terms: Public domain | W3C validator |