Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmff Structured version   Visualization version   GIF version

Theorem issmff 45748
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmff.x β„²π‘₯𝐹
issmff.s (πœ‘ β†’ 𝑆 ∈ SAlg)
issmff.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmff (πœ‘ β†’ (𝐹 ∈ (SMblFnβ€˜π‘†) ↔ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))))
Distinct variable groups:   𝐷,π‘Ž   𝐹,π‘Ž   𝑆,π‘Ž   π‘₯,π‘Ž
Allowed substitution hints:   πœ‘(π‘₯,π‘Ž)   𝐷(π‘₯)   𝑆(π‘₯)   𝐹(π‘₯)

Proof of Theorem issmff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 issmff.s . . 3 (πœ‘ β†’ 𝑆 ∈ SAlg)
2 issmff.d . . 3 𝐷 = dom 𝐹
31, 2issmf 45742 . 2 (πœ‘ β†’ (𝐹 ∈ (SMblFnβ€˜π‘†) ↔ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {𝑦 ∈ 𝐷 ∣ (πΉβ€˜π‘¦) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))))
4 nfcv 2901 . . . . . . 7 Ⅎ𝑦𝐷
5 issmff.x . . . . . . . . 9 β„²π‘₯𝐹
65nfdm 5949 . . . . . . . 8 β„²π‘₯dom 𝐹
72, 6nfcxfr 2899 . . . . . . 7 β„²π‘₯𝐷
8 nfcv 2901 . . . . . . . . 9 β„²π‘₯𝑦
95, 8nffv 6900 . . . . . . . 8 β„²π‘₯(πΉβ€˜π‘¦)
10 nfcv 2901 . . . . . . . 8 β„²π‘₯ <
11 nfcv 2901 . . . . . . . 8 β„²π‘₯π‘Ž
129, 10, 11nfbr 5194 . . . . . . 7 β„²π‘₯(πΉβ€˜π‘¦) < π‘Ž
13 nfv 1915 . . . . . . 7 Ⅎ𝑦(πΉβ€˜π‘₯) < π‘Ž
14 fveq2 6890 . . . . . . . 8 (𝑦 = π‘₯ β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘₯))
1514breq1d 5157 . . . . . . 7 (𝑦 = π‘₯ β†’ ((πΉβ€˜π‘¦) < π‘Ž ↔ (πΉβ€˜π‘₯) < π‘Ž))
164, 7, 12, 13, 15cbvrabw 3465 . . . . . 6 {𝑦 ∈ 𝐷 ∣ (πΉβ€˜π‘¦) < π‘Ž} = {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž}
1716eleq1i 2822 . . . . 5 ({𝑦 ∈ 𝐷 ∣ (πΉβ€˜π‘¦) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷) ↔ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))
1817ralbii 3091 . . . 4 (βˆ€π‘Ž ∈ ℝ {𝑦 ∈ 𝐷 ∣ (πΉβ€˜π‘¦) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷) ↔ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))
19183anbi3i 1157 . . 3 ((𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {𝑦 ∈ 𝐷 ∣ (πΉβ€˜π‘¦) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷)) ↔ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷)))
2019a1i 11 . 2 (πœ‘ β†’ ((𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {𝑦 ∈ 𝐷 ∣ (πΉβ€˜π‘¦) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷)) ↔ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))))
213, 20bitrd 278 1 (πœ‘ β†’ (𝐹 ∈ (SMblFnβ€˜π‘†) ↔ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  β„²wnfc 2881  βˆ€wral 3059  {crab 3430   βŠ† wss 3947  βˆͺ cuni 4907   class class class wbr 5147  dom cdm 5675  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  β„cr 11111   < clt 11252   β†Ύt crest 17370  SAlgcsalg 45322  SMblFncsmblfn 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-ioo 13332  df-ico 13334  df-smblfn 45710
This theorem is referenced by:  smfpreimaltf  45750  issmfdf  45751
  Copyright terms: Public domain W3C validator