Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmff Structured version   Visualization version   GIF version

Theorem issmff 46732
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmff.x 𝑥𝐹
issmff.s (𝜑𝑆 ∈ SAlg)
issmff.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmff (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎   𝐹,𝑎   𝑆,𝑎   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem issmff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 issmff.s . . 3 (𝜑𝑆 ∈ SAlg)
2 issmff.d . . 3 𝐷 = dom 𝐹
31, 2issmf 46726 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷))))
4 nfcv 2891 . . . . . . 7 𝑦𝐷
5 issmff.x . . . . . . . . 9 𝑥𝐹
65nfdm 5915 . . . . . . . 8 𝑥dom 𝐹
72, 6nfcxfr 2889 . . . . . . 7 𝑥𝐷
8 nfcv 2891 . . . . . . . . 9 𝑥𝑦
95, 8nffv 6868 . . . . . . . 8 𝑥(𝐹𝑦)
10 nfcv 2891 . . . . . . . 8 𝑥 <
11 nfcv 2891 . . . . . . . 8 𝑥𝑎
129, 10, 11nfbr 5154 . . . . . . 7 𝑥(𝐹𝑦) < 𝑎
13 nfv 1914 . . . . . . 7 𝑦(𝐹𝑥) < 𝑎
14 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1514breq1d 5117 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
164, 7, 12, 13, 15cbvrabw 3441 . . . . . 6 {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎}
1716eleq1i 2819 . . . . 5 ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
1817ralbii 3075 . . . 4 (∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
19183anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
2019a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
213, 20bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  {crab 3405  wss 3914   cuni 4871   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cr 11067   < clt 11208  t crest 17383  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioo 13310  df-ico 13312  df-smblfn 46694
This theorem is referenced by:  smfpreimaltf  46734  issmfdf  46735
  Copyright terms: Public domain W3C validator