Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmff | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmff.x | ⊢ Ⅎ𝑥𝐹 |
issmff.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmff.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
issmff | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmff.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | issmff.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
3 | 1, 2 | issmf 43729 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
4 | nfcv 2920 | . . . . . . 7 ⊢ Ⅎ𝑦𝐷 | |
5 | issmff.x | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
6 | 5 | nfdm 5793 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝐹 |
7 | 2, 6 | nfcxfr 2918 | . . . . . . 7 ⊢ Ⅎ𝑥𝐷 |
8 | nfcv 2920 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑦 | |
9 | 5, 8 | nffv 6669 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
10 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥 < | |
11 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
12 | 9, 10, 11 | nfbr 5080 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) < 𝑎 |
13 | nfv 1916 | . . . . . . 7 ⊢ Ⅎ𝑦(𝐹‘𝑥) < 𝑎 | |
14 | fveq2 6659 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
15 | 14 | breq1d 5043 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
16 | 4, 7, 12, 13, 15 | cbvrabw 3403 | . . . . . 6 ⊢ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} |
17 | 16 | eleq1i 2843 | . . . . 5 ⊢ ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
18 | 17 | ralbii 3098 | . . . 4 ⊢ (∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
19 | 18 | 3anbi3i 1157 | . . 3 ⊢ ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
21 | 3, 20 | bitrd 282 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 Ⅎwnfc 2900 ∀wral 3071 {crab 3075 ⊆ wss 3859 ∪ cuni 4799 class class class wbr 5033 dom cdm 5525 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ℝcr 10575 < clt 10714 ↾t crest 16753 SAlgcsalg 43317 SMblFncsmblfn 43701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-pre-lttri 10650 ax-pre-lttrn 10651 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-er 8300 df-pm 8420 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-ioo 12784 df-ico 12786 df-smblfn 43702 |
This theorem is referenced by: smfpreimaltf 43737 issmfdf 43738 smfpimltxr 43748 |
Copyright terms: Public domain | W3C validator |