Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfge Structured version   Visualization version   GIF version

Theorem issmfge 46785
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfge.s (𝜑𝑆 ∈ SAlg)
issmfge.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfge (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfge
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfge.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfge.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46748 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46747 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1914 . . . . . . . . 9 𝑦𝜑
8 nfv 1914 . . . . . . . . 9 𝑦 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1899 . . . . . . . 8 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1914 . . . . . . . 8 𝑦 𝑏 ∈ ℝ
119, 10nfan 1899 . . . . . . 7 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
12 nfv 1914 . . . . . . 7 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
131uniexd 7762 . . . . . . . . . . . 12 (𝜑 𝑆 ∈ V)
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
15 simpr 484 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1614, 15ssexd 5324 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
175, 16syldan 591 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
18 eqid 2737 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
192, 17, 18subsalsal 46374 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2019adantr 480 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
216ffvelcdmda 7104 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2221rexrd 11311 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
2322adantlr 715 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
242adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
253adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
26 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
2724, 25, 4, 26smfpreimagt 46777 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
2827adantlr 715 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
29 simpr 484 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3011, 12, 20, 23, 28, 29salpreimagtge 46740 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
3130ralrimiva 3146 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
325, 6, 313jca 1129 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
3332ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
34 nfv 1914 . . . . . . 7 𝑦 𝐷 𝑆
35 nfv 1914 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
36 nfcv 2905 . . . . . . . 8 𝑦
37 nfrab1 3457 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)}
38 nfcv 2905 . . . . . . . . 9 𝑦(𝑆t 𝐷)
3937, 38nfel 2920 . . . . . . . 8 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4036, 39nfralw 3311 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4134, 35, 40nf3an 1901 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
427, 41nfan 1899 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
43 nfv 1914 . . . . . 6 𝑏𝜑
44 nfv 1914 . . . . . . 7 𝑏 𝐷 𝑆
45 nfv 1914 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
46 nfra1 3284 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4744, 45, 46nf3an 1901 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
4843, 47nfan 1899 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
491adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
50 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
51 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
52 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
5342, 48, 49, 4, 50, 51, 52issmfgelem 46784 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5453ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
5533, 54impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
56 breq1 5146 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑦)))
5756rabbidv 3444 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑦𝐷𝑎 ≤ (𝐹𝑦)})
58 fveq2 6906 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
5958breq2d 5155 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑥)))
6059cbvrabv 3447 . . . . . . . 8 {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)}
6160a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6257, 61eqtrd 2777 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6362eleq1d 2826 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6463cbvralvw 3237 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
65643anbi3i 1160 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6665a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
6755, 66bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  wss 3951   cuni 4907   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  *cxr 11294   < clt 11295  cle 11296  t crest 17465  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-fl 13832  df-rest 17467  df-salg 46324  df-smblfn 46711
This theorem is referenced by:  smfpreimage  46797
  Copyright terms: Public domain W3C validator