Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfge Structured version   Visualization version   GIF version

Theorem issmfge 46775
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfge.s (𝜑𝑆 ∈ SAlg)
issmfge.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfge (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfge
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfge.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfge.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46738 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46737 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1914 . . . . . . . . 9 𝑦𝜑
8 nfv 1914 . . . . . . . . 9 𝑦 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1899 . . . . . . . 8 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1914 . . . . . . . 8 𝑦 𝑏 ∈ ℝ
119, 10nfan 1899 . . . . . . 7 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
12 nfv 1914 . . . . . . 7 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
131uniexd 7721 . . . . . . . . . . . 12 (𝜑 𝑆 ∈ V)
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
15 simpr 484 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1614, 15ssexd 5282 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
175, 16syldan 591 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
18 eqid 2730 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
192, 17, 18subsalsal 46364 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2019adantr 480 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
216ffvelcdmda 7059 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2221rexrd 11231 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
2322adantlr 715 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
242adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
253adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
26 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
2724, 25, 4, 26smfpreimagt 46767 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
2827adantlr 715 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
29 simpr 484 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3011, 12, 20, 23, 28, 29salpreimagtge 46730 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
3130ralrimiva 3126 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
325, 6, 313jca 1128 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
3332ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
34 nfv 1914 . . . . . . 7 𝑦 𝐷 𝑆
35 nfv 1914 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
36 nfcv 2892 . . . . . . . 8 𝑦
37 nfrab1 3429 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)}
38 nfcv 2892 . . . . . . . . 9 𝑦(𝑆t 𝐷)
3937, 38nfel 2907 . . . . . . . 8 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4036, 39nfralw 3287 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4134, 35, 40nf3an 1901 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
427, 41nfan 1899 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
43 nfv 1914 . . . . . 6 𝑏𝜑
44 nfv 1914 . . . . . . 7 𝑏 𝐷 𝑆
45 nfv 1914 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
46 nfra1 3262 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4744, 45, 46nf3an 1901 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
4843, 47nfan 1899 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
491adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
50 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
51 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
52 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
5342, 48, 49, 4, 50, 51, 52issmfgelem 46774 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5453ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
5533, 54impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
56 breq1 5113 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑦)))
5756rabbidv 3416 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑦𝐷𝑎 ≤ (𝐹𝑦)})
58 fveq2 6861 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
5958breq2d 5122 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑥)))
6059cbvrabv 3419 . . . . . . . 8 {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)}
6160a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6257, 61eqtrd 2765 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6362eleq1d 2814 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6463cbvralvw 3216 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
65643anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6665a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
6755, 66bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917   cuni 4874   class class class wbr 5110  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  *cxr 11214   < clt 11215  cle 11216  t crest 17390  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fl 13761  df-rest 17392  df-salg 46314  df-smblfn 46701
This theorem is referenced by:  smfpreimage  46787
  Copyright terms: Public domain W3C validator