Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfge Structured version   Visualization version   GIF version

Theorem issmfge 44192
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfge.s (𝜑𝑆 ∈ SAlg)
issmfge.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfge (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfge
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfge.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfge.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 44156 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 44155 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1918 . . . . . . . . 9 𝑦𝜑
8 nfv 1918 . . . . . . . . 9 𝑦 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1903 . . . . . . . 8 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1918 . . . . . . . 8 𝑦 𝑏 ∈ ℝ
119, 10nfan 1903 . . . . . . 7 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
12 nfv 1918 . . . . . . 7 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
131uniexd 7573 . . . . . . . . . . . 12 (𝜑 𝑆 ∈ V)
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
15 simpr 484 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1614, 15ssexd 5243 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
175, 16syldan 590 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
18 eqid 2738 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
192, 17, 18subsalsal 43788 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2019adantr 480 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
216ffvelrnda 6943 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2221rexrd 10956 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
2322adantlr 711 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
242adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
253adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
26 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
2724, 25, 4, 26smfpreimagt 44184 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
2827adantlr 711 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
29 simpr 484 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3011, 12, 20, 23, 28, 29salpreimagtge 44148 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
3130ralrimiva 3107 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
325, 6, 313jca 1126 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
3332ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
34 nfv 1918 . . . . . . 7 𝑦 𝐷 𝑆
35 nfv 1918 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
36 nfcv 2906 . . . . . . . 8 𝑦
37 nfrab1 3310 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)}
38 nfcv 2906 . . . . . . . . 9 𝑦(𝑆t 𝐷)
3937, 38nfel 2920 . . . . . . . 8 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4036, 39nfralw 3149 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4134, 35, 40nf3an 1905 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
427, 41nfan 1903 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
43 nfv 1918 . . . . . 6 𝑏𝜑
44 nfv 1918 . . . . . . 7 𝑏 𝐷 𝑆
45 nfv 1918 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
46 nfra1 3142 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4744, 45, 46nf3an 1905 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
4843, 47nfan 1903 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
491adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
50 simpr1 1192 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
51 simpr2 1193 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
52 simpr3 1194 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
5342, 48, 49, 4, 50, 51, 52issmfgelem 44191 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5453ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
5533, 54impbid 211 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
56 breq1 5073 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑦)))
5756rabbidv 3404 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑦𝐷𝑎 ≤ (𝐹𝑦)})
58 fveq2 6756 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
5958breq2d 5082 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑥)))
6059cbvrabv 3416 . . . . . . . 8 {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)}
6160a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6257, 61eqtrd 2778 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6362eleq1d 2823 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6463cbvralvw 3372 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
65643anbi3i 1157 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6665a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
6755, 66bitrd 278 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  *cxr 10939   < clt 10940  cle 10941  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440  df-rest 17050  df-salg 43740  df-smblfn 44124
This theorem is referenced by:  smfpreimage  44204
  Copyright terms: Public domain W3C validator