Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfge Structured version   Visualization version   GIF version

Theorem issmfge 46799
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfge.s (𝜑𝑆 ∈ SAlg)
issmfge.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmfge (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝑆(𝑥)

Proof of Theorem issmfge
Dummy variables 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issmfge.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝑆 ∈ SAlg)
3 simpr 484 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
4 issmfge.d . . . . . 6 𝐷 = dom 𝐹
52, 3, 4smfdmss 46762 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
62, 3, 4smff 46761 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
7 nfv 1914 . . . . . . . . 9 𝑦𝜑
8 nfv 1914 . . . . . . . . 9 𝑦 𝐹 ∈ (SMblFn‘𝑆)
97, 8nfan 1899 . . . . . . . 8 𝑦(𝜑𝐹 ∈ (SMblFn‘𝑆))
10 nfv 1914 . . . . . . . 8 𝑦 𝑏 ∈ ℝ
119, 10nfan 1899 . . . . . . 7 𝑦((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
12 nfv 1914 . . . . . . 7 𝑐((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ)
131uniexd 7736 . . . . . . . . . . . 12 (𝜑 𝑆 ∈ V)
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝑆 ∈ V)
15 simpr 484 . . . . . . . . . . 11 ((𝜑𝐷 𝑆) → 𝐷 𝑆)
1614, 15ssexd 5294 . . . . . . . . . 10 ((𝜑𝐷 𝑆) → 𝐷 ∈ V)
175, 16syldan 591 . . . . . . . . 9 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ∈ V)
18 eqid 2735 . . . . . . . . 9 (𝑆t 𝐷) = (𝑆t 𝐷)
192, 17, 18subsalsal 46388 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝑆t 𝐷) ∈ SAlg)
2019adantr 480 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → (𝑆t 𝐷) ∈ SAlg)
216ffvelcdmda 7074 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2221rexrd 11285 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
2322adantlr 715 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℝ*)
242adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑆 ∈ SAlg)
253adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
26 simpr 484 . . . . . . . . 9 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
2724, 25, 4, 26smfpreimagt 46791 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
2827adantlr 715 . . . . . . 7 ((((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → {𝑦𝐷𝑐 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
29 simpr 484 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
3011, 12, 20, 23, 28, 29salpreimagtge 46754 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑏 ∈ ℝ) → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
3130ralrimiva 3132 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
325, 6, 313jca 1128 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
3332ex 412 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
34 nfv 1914 . . . . . . 7 𝑦 𝐷 𝑆
35 nfv 1914 . . . . . . 7 𝑦 𝐹:𝐷⟶ℝ
36 nfcv 2898 . . . . . . . 8 𝑦
37 nfrab1 3436 . . . . . . . . 9 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)}
38 nfcv 2898 . . . . . . . . 9 𝑦(𝑆t 𝐷)
3937, 38nfel 2913 . . . . . . . 8 𝑦{𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4036, 39nfralw 3291 . . . . . . 7 𝑦𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4134, 35, 40nf3an 1901 . . . . . 6 𝑦(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
427, 41nfan 1899 . . . . 5 𝑦(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
43 nfv 1914 . . . . . 6 𝑏𝜑
44 nfv 1914 . . . . . . 7 𝑏 𝐷 𝑆
45 nfv 1914 . . . . . . 7 𝑏 𝐹:𝐷⟶ℝ
46 nfra1 3266 . . . . . . 7 𝑏𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)
4744, 45, 46nf3an 1901 . . . . . 6 𝑏(𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
4843, 47nfan 1899 . . . . 5 𝑏(𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)))
491adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝑆 ∈ SAlg)
50 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐷 𝑆)
51 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹:𝐷⟶ℝ)
52 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))
5342, 48, 49, 4, 50, 51, 52issmfgelem 46798 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
5453ex 412 . . 3 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
5533, 54impbid 212 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷))))
56 breq1 5122 . . . . . . . 8 (𝑏 = 𝑎 → (𝑏 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑦)))
5756rabbidv 3423 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑦𝐷𝑎 ≤ (𝐹𝑦)})
58 fveq2 6876 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
5958breq2d 5131 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑎 ≤ (𝐹𝑦) ↔ 𝑎 ≤ (𝐹𝑥)))
6059cbvrabv 3426 . . . . . . . 8 {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)}
6160a1i 11 . . . . . . 7 (𝑏 = 𝑎 → {𝑦𝐷𝑎 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6257, 61eqtrd 2770 . . . . . 6 (𝑏 = 𝑎 → {𝑦𝐷𝑏 ≤ (𝐹𝑦)} = {𝑥𝐷𝑎 ≤ (𝐹𝑥)})
6362eleq1d 2819 . . . . 5 (𝑏 = 𝑎 → ({𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6463cbvralvw 3220 . . . 4 (∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
65643anbi3i 1159 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
6665a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦𝐷𝑏 ≤ (𝐹𝑦)} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
6755, 66bitrd 279 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  wss 3926   cuni 4883   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  *cxr 11268   < clt 11269  cle 11270  t crest 17434  SAlgcsalg 46337  SMblFncsmblfn 46724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-ioo 13366  df-ico 13368  df-fl 13809  df-rest 17436  df-salg 46338  df-smblfn 46725
This theorem is referenced by:  smfpreimage  46811
  Copyright terms: Public domain W3C validator