MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclb Structured version   Visualization version   GIF version

Theorem xrsdsreclb 20926
Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclb
StepHypRef Expression
1 xrsds.d . . . . . 6 𝐷 = (dist‘ℝ*𝑠)
21xrsdsval 20923 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
323adant3 1132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
43eleq1d 2817 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
5 eleq1 2820 . . . . 5 ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
65imbi1d 341 . . . 4 ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
7 eleq1 2820 . . . . 5 ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
87imbi1d 341 . . . 4 ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
91xrsdsreclblem 20925 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
10 xrletri 13114 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵𝐴))
11103adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵𝐵𝐴))
1211orcanai 1001 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
13 necom 2993 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
14133anbi3i 1159 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴))
15 3ancoma 1098 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴))
1614, 15bitri 274 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴))
171xrsdsreclblem 20925 . . . . . . 7 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)))
1816, 17sylanb 581 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)))
19 ancom 461 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2018, 19syl6ib 250 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
2112, 20syldan 591 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ ¬ 𝐴𝐵) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
226, 8, 9, 21ifbothda 4560 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
234, 22sylbid 239 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
241xrsdsreval 20924 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
25 recn 11182 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26 recn 11182 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
27 subcl 11441 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2825, 26, 27syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℂ)
2928abscld 15365 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) ∈ ℝ)
3024, 29eqeltrd 2832 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ)
3123, 30impbid1 224 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2939  ifcif 4522   class class class wbr 5141  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  *cxr 11229  cle 11231  cmin 11426  -𝑒cxne 13071   +𝑒 cxad 13072  abscabs 15163  distcds 17188  *𝑠cxrs 17428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-rp 12957  df-xneg 13074  df-xadd 13075  df-fz 13467  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17127  df-plusg 17192  df-mulr 17193  df-tset 17198  df-ple 17199  df-ds 17201  df-xrs 17430
This theorem is referenced by:  xrsxmet  24254  xrsblre  24256  xrsmopn  24257
  Copyright terms: Public domain W3C validator