| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsdsreclb | Structured version Visualization version GIF version | ||
| Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| xrsds.d | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
| Ref | Expression |
|---|---|
| xrsdsreclb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsds.d | . . . . . 6 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
| 2 | 1 | xrsdsval 21428 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
| 3 | 2 | 3adant3 1133 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
| 4 | 3 | eleq1d 2826 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ)) |
| 5 | eleq1 2829 | . . . . 5 ⊢ ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ)) | |
| 6 | 5 | imbi1d 341 | . . . 4 ⊢ ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))) |
| 7 | eleq1 2829 | . . . . 5 ⊢ ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ ↔ if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ)) | |
| 8 | 7 | imbi1d 341 | . . . 4 ⊢ ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))) |
| 9 | 1 | xrsdsreclblem 21430 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ≤ 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| 10 | xrletri 13195 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
| 11 | 10 | 3adant3 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 12 | 11 | orcanai 1005 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
| 13 | necom 2994 | . . . . . . . . 9 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 14 | 13 | 3anbi3i 1160 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≠ 𝐴)) |
| 15 | 3ancoma 1098 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≠ 𝐴) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ≠ 𝐴)) | |
| 16 | 14, 15 | bitri 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ≠ 𝐴)) |
| 17 | 1 | xrsdsreclblem 21430 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ≠ 𝐴) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ))) |
| 18 | 16, 17 | sylanb 581 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ))) |
| 19 | ancom 460 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | |
| 20 | 18, 19 | imbitrdi 251 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| 21 | 12, 20 | syldan 591 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| 22 | 6, 8, 9, 21 | ifbothda 4564 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → (if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| 23 | 4, 22 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| 24 | 1 | xrsdsreval 21429 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| 25 | recn 11245 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 26 | recn 11245 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 27 | subcl 11507 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 28 | 25, 26, 27 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℂ) |
| 29 | 28 | abscld 15475 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
| 30 | 24, 29 | eqeltrd 2841 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ) |
| 31 | 23, 30 | impbid1 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 ℝ*cxr 11294 ≤ cle 11296 − cmin 11492 -𝑒cxne 13151 +𝑒 cxad 13152 abscabs 15273 distcds 17306 ℝ*𝑠cxrs 17545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-xneg 13154 df-xadd 13155 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-ds 17319 df-xrs 17547 |
| This theorem is referenced by: xrsxmet 24831 xrsblre 24833 xrsmopn 24834 |
| Copyright terms: Public domain | W3C validator |