MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclb Structured version   Visualization version   GIF version

Theorem xrsdsreclb 20594
Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclb
StepHypRef Expression
1 xrsds.d . . . . . 6 𝐷 = (dist‘ℝ*𝑠)
21xrsdsval 20591 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
323adant3 1128 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
43eleq1d 2899 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
5 eleq1 2902 . . . . 5 ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
65imbi1d 344 . . . 4 ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
7 eleq1 2902 . . . . 5 ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
87imbi1d 344 . . . 4 ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
91xrsdsreclblem 20593 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
10 xrletri 12549 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵𝐴))
11103adant3 1128 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵𝐵𝐴))
1211orcanai 999 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
13 necom 3071 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
14133anbi3i 1155 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴))
15 3ancoma 1094 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴))
1614, 15bitri 277 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴))
171xrsdsreclblem 20593 . . . . . . 7 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)))
1816, 17sylanb 583 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)))
19 ancom 463 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2018, 19syl6ib 253 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
2112, 20syldan 593 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ ¬ 𝐴𝐵) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
226, 8, 9, 21ifbothda 4506 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
234, 22sylbid 242 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
241xrsdsreval 20592 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
25 recn 10629 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26 recn 10629 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
27 subcl 10887 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2825, 26, 27syl2an 597 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℂ)
2928abscld 14798 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) ∈ ℝ)
3024, 29eqeltrd 2915 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ)
3123, 30impbid1 227 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  ifcif 4469   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  *cxr 10676  cle 10678  cmin 10872  -𝑒cxne 12507   +𝑒 cxad 12508  abscabs 14595  distcds 16576  *𝑠cxrs 16775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-xneg 12510  df-xadd 12511  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-tset 16586  df-ple 16587  df-ds 16589  df-xrs 16777
This theorem is referenced by:  xrsxmet  23419  xrsblre  23421  xrsmopn  23422
  Copyright terms: Public domain W3C validator