MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclb Structured version   Visualization version   GIF version

Theorem xrsdsreclb 20008
Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclb
StepHypRef Expression
1 xrsds.d . . . . . 6 𝐷 = (dist‘ℝ*𝑠)
21xrsdsval 20005 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
323adant3 1126 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
43eleq1d 2835 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
5 eleq1 2838 . . . . 5 ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
65imbi1d 330 . . . 4 ((𝐵 +𝑒 -𝑒𝐴) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
7 eleq1 2838 . . . . 5 ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ ↔ if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ))
87imbi1d 330 . . . 4 ((𝐴 +𝑒 -𝑒𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) → (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ↔ (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
91xrsdsreclblem 20007 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
10 xrletri 12189 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵𝐴))
11103adant3 1126 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵𝐵𝐴))
1211orcanai 987 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
13 necom 2996 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
14133anbi3i 1162 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴))
15 3ancoma 1083 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴))
1614, 15bitri 264 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴))
171xrsdsreclblem 20007 . . . . . . 7 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐵𝐴) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)))
1816, 17sylanb 570 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)))
19 ancom 452 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2018, 19syl6ib 241 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
2112, 20syldan 579 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ ¬ 𝐴𝐵) → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
226, 8, 9, 21ifbothda 4262 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
234, 22sylbid 230 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
241xrsdsreval 20006 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
25 recn 10228 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26 recn 10228 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
27 subcl 10482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2825, 26, 27syl2an 583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℂ)
2928abscld 14383 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) ∈ ℝ)
3024, 29eqeltrd 2850 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ)
3123, 30impbid1 215 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  ifcif 4225   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  *cxr 10275  cle 10277  cmin 10468  -𝑒cxne 12148   +𝑒 cxad 12149  abscabs 14182  distcds 16158  *𝑠cxrs 16368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-xneg 12151  df-xadd 12152  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-tset 16168  df-ple 16169  df-ds 16172  df-xrs 16370
This theorem is referenced by:  xrsxmet  22832  xrsblre  22834  xrsmopn  22835
  Copyright terms: Public domain W3C validator