MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem2 Structured version   Visualization version   GIF version

Theorem regr1lem2 23627
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
regr1lem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem regr1lem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
2 simplll 774 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpllr 775 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ Reg)
4 simplrl 776 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑧𝑋)
5 simplrr 777 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑤𝑋)
6 simprl 770 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑎𝐽)
7 simprr 772 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
81, 2, 3, 4, 5, 6, 7regr1lem 23626 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
9 3ancoma 1097 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅))
10 incom 4172 . . . . . . . . . . . . . . . 16 (𝑚𝑛) = (𝑛𝑚)
1110eqeq1i 2734 . . . . . . . . . . . . . . 15 ((𝑚𝑛) = ∅ ↔ (𝑛𝑚) = ∅)
12113anbi3i 1159 . . . . . . . . . . . . . 14 (((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
139, 12bitri 275 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
14132rexbii 3109 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
15 rexcom 3266 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
1614, 15bitri 275 . . . . . . . . . . 11 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
177, 16sylnib 328 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
181, 2, 3, 5, 4, 6, 17regr1lem 23626 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑤𝑎𝑧𝑎))
198, 18impbid 212 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
2019expr 456 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑎𝐽) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝑧𝑎𝑤𝑎)))
2120ralrimdva 3133 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
221kqfeq 23611 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
23 elequ2 2124 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑧𝑦𝑧𝑎))
24 elequ2 2124 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑤𝑦𝑤𝑎))
2523, 24bibi12d 345 . . . . . . . . . 10 (𝑦 = 𝑎 → ((𝑧𝑦𝑤𝑦) ↔ (𝑧𝑎𝑤𝑎)))
2625cbvralvw 3215 . . . . . . . . 9 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎))
2722, 26bitrdi 287 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
28273expb 1120 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
2928adantlr 715 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
3021, 29sylibrd 259 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝐹𝑧) = (𝐹𝑤)))
3130necon1ad 2942 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
3231ralrimivva 3180 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
331kqffn 23612 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3433adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
35 neeq1 2987 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (𝑎𝑏 ↔ (𝐹𝑧) ≠ 𝑏))
36 eleq1 2816 . . . . . . . . . 10 (𝑎 = (𝐹𝑧) → (𝑎𝑚 ↔ (𝐹𝑧) ∈ 𝑚))
37363anbi1d 1442 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → ((𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
38372rexbidv 3202 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
3935, 38imbi12d 344 . . . . . . 7 (𝑎 = (𝐹𝑧) → ((𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4039ralbidv 3156 . . . . . 6 (𝑎 = (𝐹𝑧) → (∀𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4140ralrn 7060 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
42 neeq2 2988 . . . . . . . 8 (𝑏 = (𝐹𝑤) → ((𝐹𝑧) ≠ 𝑏 ↔ (𝐹𝑧) ≠ (𝐹𝑤)))
43 eleq1 2816 . . . . . . . . . 10 (𝑏 = (𝐹𝑤) → (𝑏𝑛 ↔ (𝐹𝑤) ∈ 𝑛))
44433anbi2d 1443 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
45442rexbidv 3202 . . . . . . . 8 (𝑏 = (𝐹𝑤) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
4642, 45imbi12d 344 . . . . . . 7 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4746ralrn 7060 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4847ralbidv 3156 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4941, 48bitrd 279 . . . 4 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5034, 49syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5132, 50mpbird 257 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
521kqtopon 23614 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
5352adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
54 ishaus2 23238 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5553, 54syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5651, 55mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  c0 4296  cmpt 5188  ran crn 5639   Fn wfn 6506  cfv 6511  TopOnctopon 22797  Hauscha 23195  Regcreg 23196  KQckq 23580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-qtop 17470  df-top 22781  df-topon 22798  df-cld 22906  df-cls 22908  df-haus 23202  df-reg 23203  df-kq 23581
This theorem is referenced by:  regr1  23637
  Copyright terms: Public domain W3C validator