| Step | Hyp | Ref
| Expression |
| 1 | | kqval.2 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 2 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝐽 ∈ Reg) |
| 4 | | simplrl 776 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝑧 ∈ 𝑋) |
| 5 | | simplrr 777 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝑤 ∈ 𝑋) |
| 6 | | simprl 770 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝑎 ∈ 𝐽) |
| 7 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | regr1lem 23682 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → (𝑧 ∈ 𝑎 → 𝑤 ∈ 𝑎)) |
| 9 | | 3ancoma 1097 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 10 | | incom 4189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∩ 𝑛) = (𝑛 ∩ 𝑚) |
| 11 | 10 | eqeq1i 2741 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∩ 𝑛) = ∅ ↔ (𝑛 ∩ 𝑚) = ∅) |
| 12 | 11 | 3anbi3i 1159 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 13 | 9, 12 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 14 | 13 | 2rexbii 3117 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
(KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 15 | | rexcom 3275 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
(KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 16 | 14, 15 | bitri 275 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈
(KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 17 | 7, 16 | sylnib 328 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → ¬ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 18 | 1, 2, 3, 5, 4, 6, 17 | regr1lem 23682 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → (𝑤 ∈ 𝑎 → 𝑧 ∈ 𝑎)) |
| 19 | 8, 18 | impbid 212 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎)) |
| 20 | 19 | expr 456 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑎 ∈ 𝐽) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
| 21 | 20 | ralrimdva 3141 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
| 22 | 1 | kqfeq 23667 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
| 23 | | elequ2 2124 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑎)) |
| 24 | | elequ2 2124 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑎)) |
| 25 | 23, 24 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → ((𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
| 26 | 25 | cbvralvw 3224 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎)) |
| 27 | 22, 26 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
| 28 | 27 | 3expb 1120 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
| 29 | 28 | adantlr 715 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
| 30 | 21, 29 | sylibrd 259 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
| 31 | 30 | necon1ad 2950 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 32 | 31 | ralrimivva 3188 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 33 | 1 | kqffn 23668 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋) |
| 35 | | neeq1 2995 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 ≠ 𝑏 ↔ (𝐹‘𝑧) ≠ 𝑏)) |
| 36 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 ∈ 𝑚 ↔ (𝐹‘𝑧) ∈ 𝑚)) |
| 37 | 36 | 3anbi1d 1442 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹‘𝑧) → ((𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 38 | 37 | 2rexbidv 3210 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑧) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 39 | 35, 38 | imbi12d 344 |
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑧) → ((𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 40 | 39 | ralbidv 3164 |
. . . . . 6
⊢ (𝑎 = (𝐹‘𝑧) → (∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 41 | 40 | ralrn 7083 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 42 | | neeq2 2996 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑤) → ((𝐹‘𝑧) ≠ 𝑏 ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑤))) |
| 43 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑤) → (𝑏 ∈ 𝑛 ↔ (𝐹‘𝑤) ∈ 𝑛)) |
| 44 | 43 | 3anbi2d 1443 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑤) → (((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 45 | 44 | 2rexbidv 3210 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑤) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 46 | 42, 45 | imbi12d 344 |
. . . . . . 7
⊢ (𝑏 = (𝐹‘𝑤) → (((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 47 | 46 | ralrn 7083 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 48 | 47 | ralbidv 3164 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 49 | 41, 48 | bitrd 279 |
. . . 4
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 50 | 34, 49 | syl 17 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 51 | 32, 50 | mpbird 257 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 52 | 1 | kqtopon 23670 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 53 | 52 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 54 | | ishaus2 23294 |
. . 3
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
((KQ‘𝐽) ∈ Haus
↔ ∀𝑎 ∈ ran
𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 55 | 53, 54 | syl 17 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ((KQ‘𝐽) ∈ Haus ↔
∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 56 | 51, 55 | mpbird 257 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus) |