Step | Hyp | Ref
| Expression |
1 | | kqval.2 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
2 | | simplll 771 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝐽 ∈ Reg) |
4 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝑧 ∈ 𝑋) |
5 | | simplrr 774 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝑤 ∈ 𝑋) |
6 | | simprl 767 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → 𝑎 ∈ 𝐽) |
7 | | simprr 769 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
8 | 1, 2, 3, 4, 5, 6, 7 | regr1lem 22871 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → (𝑧 ∈ 𝑎 → 𝑤 ∈ 𝑎)) |
9 | | 3ancoma 1096 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑚 ∩ 𝑛) = ∅)) |
10 | | incom 4139 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∩ 𝑛) = (𝑛 ∩ 𝑚) |
11 | 10 | eqeq1i 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∩ 𝑛) = ∅ ↔ (𝑛 ∩ 𝑚) = ∅) |
12 | 11 | 3anbi3i 1157 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
13 | 9, 12 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
14 | 13 | 2rexbii 3180 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
(KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
15 | | rexcom 3283 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
(KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
16 | 14, 15 | bitri 274 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈
(KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
17 | 7, 16 | sylnib 327 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → ¬ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ (𝐹‘𝑧) ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
18 | 1, 2, 3, 5, 4, 6, 17 | regr1lem 22871 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → (𝑤 ∈ 𝑎 → 𝑧 ∈ 𝑎)) |
19 | 8, 18 | impbid 211 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ (𝑎 ∈ 𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) → (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎)) |
20 | 19 | expr 456 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ∧ 𝑎 ∈ 𝐽) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
21 | 20 | ralrimdva 3114 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
22 | 1 | kqfeq 22856 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
23 | | elequ2 2124 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑎)) |
24 | | elequ2 2124 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑎)) |
25 | 23, 24 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑎 → ((𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
26 | 25 | cbvralvw 3380 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎)) |
27 | 22, 26 | bitrdi 286 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
28 | 27 | 3expb 1118 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
29 | 28 | adantlr 711 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑎 ∈ 𝐽 (𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎))) |
30 | 21, 29 | sylibrd 258 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → (𝐹‘𝑧) = (𝐹‘𝑤))) |
31 | 30 | necon1ad 2961 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
32 | 31 | ralrimivva 3116 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
33 | 1 | kqffn 22857 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋) |
35 | | neeq1 3007 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 ≠ 𝑏 ↔ (𝐹‘𝑧) ≠ 𝑏)) |
36 | | eleq1 2827 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐹‘𝑧) → (𝑎 ∈ 𝑚 ↔ (𝐹‘𝑧) ∈ 𝑚)) |
37 | 36 | 3anbi1d 1438 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹‘𝑧) → ((𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
38 | 37 | 2rexbidv 3230 |
. . . . . . . 8
⊢ (𝑎 = (𝐹‘𝑧) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
39 | 35, 38 | imbi12d 344 |
. . . . . . 7
⊢ (𝑎 = (𝐹‘𝑧) → ((𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
40 | 39 | ralbidv 3122 |
. . . . . 6
⊢ (𝑎 = (𝐹‘𝑧) → (∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
41 | 40 | ralrn 6958 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
42 | | neeq2 3008 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑤) → ((𝐹‘𝑧) ≠ 𝑏 ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑤))) |
43 | | eleq1 2827 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑤) → (𝑏 ∈ 𝑛 ↔ (𝐹‘𝑤) ∈ 𝑛)) |
44 | 43 | 3anbi2d 1439 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑤) → (((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
45 | 44 | 2rexbidv 3230 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑤) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
46 | 42, 45 | imbi12d 344 |
. . . . . . 7
⊢ (𝑏 = (𝐹‘𝑤) → (((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
47 | 46 | ralrn 6958 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
48 | 47 | ralbidv 3122 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑧 ∈ 𝑋 ∀𝑏 ∈ ran 𝐹((𝐹‘𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
49 | 41, 48 | bitrd 278 |
. . . 4
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
50 | 34, 49 | syl 17 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑧) ∈ 𝑚 ∧ (𝐹‘𝑤) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
51 | 32, 50 | mpbird 256 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
52 | 1 | kqtopon 22859 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
53 | 52 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
54 | | ishaus2 22483 |
. . 3
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
((KQ‘𝐽) ∈ Haus
↔ ∀𝑎 ∈ ran
𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
55 | 53, 54 | syl 17 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ((KQ‘𝐽) ∈ Haus ↔
∀𝑎 ∈ ran 𝐹∀𝑏 ∈ ran 𝐹(𝑎 ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
56 | 51, 55 | mpbird 256 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus) |