MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem2 Structured version   Visualization version   GIF version

Theorem regr1lem2 22872
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
regr1lem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem regr1lem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
2 simplll 771 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpllr 772 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ Reg)
4 simplrl 773 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑧𝑋)
5 simplrr 774 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑤𝑋)
6 simprl 767 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑎𝐽)
7 simprr 769 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
81, 2, 3, 4, 5, 6, 7regr1lem 22871 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
9 3ancoma 1096 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅))
10 incom 4139 . . . . . . . . . . . . . . . 16 (𝑚𝑛) = (𝑛𝑚)
1110eqeq1i 2744 . . . . . . . . . . . . . . 15 ((𝑚𝑛) = ∅ ↔ (𝑛𝑚) = ∅)
12113anbi3i 1157 . . . . . . . . . . . . . 14 (((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
139, 12bitri 274 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
14132rexbii 3180 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
15 rexcom 3283 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
1614, 15bitri 274 . . . . . . . . . . 11 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
177, 16sylnib 327 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
181, 2, 3, 5, 4, 6, 17regr1lem 22871 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑤𝑎𝑧𝑎))
198, 18impbid 211 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
2019expr 456 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑎𝐽) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝑧𝑎𝑤𝑎)))
2120ralrimdva 3114 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
221kqfeq 22856 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
23 elequ2 2124 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑧𝑦𝑧𝑎))
24 elequ2 2124 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑤𝑦𝑤𝑎))
2523, 24bibi12d 345 . . . . . . . . . 10 (𝑦 = 𝑎 → ((𝑧𝑦𝑤𝑦) ↔ (𝑧𝑎𝑤𝑎)))
2625cbvralvw 3380 . . . . . . . . 9 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎))
2722, 26bitrdi 286 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
28273expb 1118 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
2928adantlr 711 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
3021, 29sylibrd 258 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝐹𝑧) = (𝐹𝑤)))
3130necon1ad 2961 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
3231ralrimivva 3116 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
331kqffn 22857 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3433adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
35 neeq1 3007 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (𝑎𝑏 ↔ (𝐹𝑧) ≠ 𝑏))
36 eleq1 2827 . . . . . . . . . 10 (𝑎 = (𝐹𝑧) → (𝑎𝑚 ↔ (𝐹𝑧) ∈ 𝑚))
37363anbi1d 1438 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → ((𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
38372rexbidv 3230 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
3935, 38imbi12d 344 . . . . . . 7 (𝑎 = (𝐹𝑧) → ((𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4039ralbidv 3122 . . . . . 6 (𝑎 = (𝐹𝑧) → (∀𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4140ralrn 6958 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
42 neeq2 3008 . . . . . . . 8 (𝑏 = (𝐹𝑤) → ((𝐹𝑧) ≠ 𝑏 ↔ (𝐹𝑧) ≠ (𝐹𝑤)))
43 eleq1 2827 . . . . . . . . . 10 (𝑏 = (𝐹𝑤) → (𝑏𝑛 ↔ (𝐹𝑤) ∈ 𝑛))
44433anbi2d 1439 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
45442rexbidv 3230 . . . . . . . 8 (𝑏 = (𝐹𝑤) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
4642, 45imbi12d 344 . . . . . . 7 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4746ralrn 6958 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4847ralbidv 3122 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4941, 48bitrd 278 . . . 4 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5034, 49syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5132, 50mpbird 256 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
521kqtopon 22859 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
5352adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
54 ishaus2 22483 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5553, 54syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5651, 55mpbird 256 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  {crab 3069  cin 3890  c0 4261  cmpt 5161  ran crn 5589   Fn wfn 6425  cfv 6430  TopOnctopon 22040  Hauscha 22440  Regcreg 22441  KQckq 22825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-qtop 17199  df-top 22024  df-topon 22041  df-cld 22151  df-cls 22153  df-haus 22447  df-reg 22448  df-kq 22826
This theorem is referenced by:  regr1  22882
  Copyright terms: Public domain W3C validator