MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem2 Structured version   Visualization version   GIF version

Theorem regr1lem2 22891
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
regr1lem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem regr1lem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
2 simplll 772 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpllr 773 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ Reg)
4 simplrl 774 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑧𝑋)
5 simplrr 775 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑤𝑋)
6 simprl 768 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑎𝐽)
7 simprr 770 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
81, 2, 3, 4, 5, 6, 7regr1lem 22890 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
9 3ancoma 1097 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅))
10 incom 4135 . . . . . . . . . . . . . . . 16 (𝑚𝑛) = (𝑛𝑚)
1110eqeq1i 2743 . . . . . . . . . . . . . . 15 ((𝑚𝑛) = ∅ ↔ (𝑛𝑚) = ∅)
12113anbi3i 1158 . . . . . . . . . . . . . 14 (((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
139, 12bitri 274 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
14132rexbii 3182 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
15 rexcom 3234 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
1614, 15bitri 274 . . . . . . . . . . 11 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
177, 16sylnib 328 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
181, 2, 3, 5, 4, 6, 17regr1lem 22890 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑤𝑎𝑧𝑎))
198, 18impbid 211 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
2019expr 457 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑎𝐽) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝑧𝑎𝑤𝑎)))
2120ralrimdva 3106 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
221kqfeq 22875 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
23 elequ2 2121 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑧𝑦𝑧𝑎))
24 elequ2 2121 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑤𝑦𝑤𝑎))
2523, 24bibi12d 346 . . . . . . . . . 10 (𝑦 = 𝑎 → ((𝑧𝑦𝑤𝑦) ↔ (𝑧𝑎𝑤𝑎)))
2625cbvralvw 3383 . . . . . . . . 9 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎))
2722, 26bitrdi 287 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
28273expb 1119 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
2928adantlr 712 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
3021, 29sylibrd 258 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝐹𝑧) = (𝐹𝑤)))
3130necon1ad 2960 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
3231ralrimivva 3123 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
331kqffn 22876 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3433adantr 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
35 neeq1 3006 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (𝑎𝑏 ↔ (𝐹𝑧) ≠ 𝑏))
36 eleq1 2826 . . . . . . . . . 10 (𝑎 = (𝐹𝑧) → (𝑎𝑚 ↔ (𝐹𝑧) ∈ 𝑚))
37363anbi1d 1439 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → ((𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
38372rexbidv 3229 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
3935, 38imbi12d 345 . . . . . . 7 (𝑎 = (𝐹𝑧) → ((𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4039ralbidv 3112 . . . . . 6 (𝑎 = (𝐹𝑧) → (∀𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4140ralrn 6964 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
42 neeq2 3007 . . . . . . . 8 (𝑏 = (𝐹𝑤) → ((𝐹𝑧) ≠ 𝑏 ↔ (𝐹𝑧) ≠ (𝐹𝑤)))
43 eleq1 2826 . . . . . . . . . 10 (𝑏 = (𝐹𝑤) → (𝑏𝑛 ↔ (𝐹𝑤) ∈ 𝑛))
44433anbi2d 1440 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
45442rexbidv 3229 . . . . . . . 8 (𝑏 = (𝐹𝑤) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
4642, 45imbi12d 345 . . . . . . 7 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4746ralrn 6964 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4847ralbidv 3112 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4941, 48bitrd 278 . . . 4 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5034, 49syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5132, 50mpbird 256 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
521kqtopon 22878 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
5352adantr 481 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
54 ishaus2 22502 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5553, 54syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5651, 55mpbird 256 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  c0 4256  cmpt 5157  ran crn 5590   Fn wfn 6428  cfv 6433  TopOnctopon 22059  Hauscha 22459  Regcreg 22460  KQckq 22844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-qtop 17218  df-top 22043  df-topon 22060  df-cld 22170  df-cls 22172  df-haus 22466  df-reg 22467  df-kq 22845
This theorem is referenced by:  regr1  22901
  Copyright terms: Public domain W3C validator