MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgsubm Structured version   Visualization version   GIF version

Theorem oppgsubm 18482
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgsubm (SubMnd‘𝐺) = (SubMnd‘𝑂)

Proof of Theorem oppgsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17959 . . 3 (𝑥 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2 submrcl 17959 . . . 4 (𝑥 ∈ (SubMnd‘𝑂) → 𝑂 ∈ Mnd)
3 oppggic.o . . . . 5 𝑂 = (oppg𝐺)
43oppgmndb 18475 . . . 4 (𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd)
52, 4sylibr 237 . . 3 (𝑥 ∈ (SubMnd‘𝑂) → 𝐺 ∈ Mnd)
6 ralcom 3307 . . . . . . 7 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
7 eqid 2798 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
8 eqid 2798 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
97, 3, 8oppgplus 18469 . . . . . . . . 9 (𝑧(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑧)
109eleq1i 2880 . . . . . . . 8 ((𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑥)
11102ralbii 3134 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
126, 11bitr4i 281 . . . . . 6 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)
13123anbi3i 1156 . . . . 5 ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥))
1413a1i 11 . . . 4 (𝐺 ∈ Mnd → ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
15 eqid 2798 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
16 eqid 2798 . . . . 5 (0g𝐺) = (0g𝐺)
1715, 16, 7issubm 17960 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)))
183, 15oppgbas 18471 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
193, 16oppgid 18476 . . . . . 6 (0g𝐺) = (0g𝑂)
2018, 19, 8issubm 17960 . . . . 5 (𝑂 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
214, 20sylbi 220 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
2214, 17, 213bitr4d 314 . . 3 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)))
231, 5, 22pm5.21nii 383 . 2 (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))
2423eqriv 2795 1 (SubMnd‘𝐺) = (SubMnd‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 209  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Mndcmnd 17903  SubMndcsubmnd 17947  oppgcoppg 18465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-oppg 18466
This theorem is referenced by:  oppgsubg  18483  gsumzoppg  19057
  Copyright terms: Public domain W3C validator