MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgsubm Structured version   Visualization version   GIF version

Theorem oppgsubm 18055
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgsubm (SubMnd‘𝐺) = (SubMnd‘𝑂)

Proof of Theorem oppgsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17612 . . 3 (𝑥 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2 submrcl 17612 . . . 4 (𝑥 ∈ (SubMnd‘𝑂) → 𝑂 ∈ Mnd)
3 oppggic.o . . . . 5 𝑂 = (oppg𝐺)
43oppgmndb 18048 . . . 4 (𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd)
52, 4sylibr 225 . . 3 (𝑥 ∈ (SubMnd‘𝑂) → 𝐺 ∈ Mnd)
6 ralcom 3245 . . . . . . 7 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
7 eqid 2765 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
8 eqid 2765 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
97, 3, 8oppgplus 18042 . . . . . . . . 9 (𝑧(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑧)
109eleq1i 2835 . . . . . . . 8 ((𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑥)
11102ralbii 3128 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
126, 11bitr4i 269 . . . . . 6 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)
13123anbi3i 1198 . . . . 5 ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥))
1413a1i 11 . . . 4 (𝐺 ∈ Mnd → ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
15 eqid 2765 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
16 eqid 2765 . . . . 5 (0g𝐺) = (0g𝐺)
1715, 16, 7issubm 17613 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)))
183, 15oppgbas 18044 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
193, 16oppgid 18049 . . . . . 6 (0g𝐺) = (0g𝑂)
2018, 19, 8issubm 17613 . . . . 5 (𝑂 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
214, 20sylbi 208 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
2214, 17, 213bitr4d 302 . . 3 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)))
231, 5, 22pm5.21nii 369 . 2 (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))
2423eqriv 2762 1 (SubMnd‘𝐺) = (SubMnd‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 197  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wss 3732  cfv 6068  (class class class)co 6842  Basecbs 16130  +gcplusg 16214  0gc0g 16366  Mndcmnd 17560  SubMndcsubmnd 17600  oppgcoppg 18038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-plusg 16227  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-oppg 18039
This theorem is referenced by:  oppgsubg  18056  gsumzoppg  18610
  Copyright terms: Public domain W3C validator