Step | Hyp | Ref
| Expression |
1 | | submrcl 18682 |
. . 3
β’ (π₯ β (SubMndβπΊ) β πΊ β Mnd) |
2 | | submrcl 18682 |
. . . 4
β’ (π₯ β (SubMndβπ) β π β Mnd) |
3 | | oppggic.o |
. . . . 5
β’ π =
(oppgβπΊ) |
4 | 3 | oppgmndb 19221 |
. . . 4
β’ (πΊ β Mnd β π β Mnd) |
5 | 2, 4 | sylibr 233 |
. . 3
β’ (π₯ β (SubMndβπ) β πΊ β Mnd) |
6 | | ralcom 3286 |
. . . . . . 7
β’
(βπ¦ β
π₯ βπ§ β π₯ (π¦(+gβπΊ)π§) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π¦(+gβπΊ)π§) β π₯) |
7 | | eqid 2732 |
. . . . . . . . . 10
β’
(+gβπΊ) = (+gβπΊ) |
8 | | eqid 2732 |
. . . . . . . . . 10
β’
(+gβπ) = (+gβπ) |
9 | 7, 3, 8 | oppgplus 19212 |
. . . . . . . . 9
β’ (π§(+gβπ)π¦) = (π¦(+gβπΊ)π§) |
10 | 9 | eleq1i 2824 |
. . . . . . . 8
β’ ((π§(+gβπ)π¦) β π₯ β (π¦(+gβπΊ)π§) β π₯) |
11 | 10 | 2ralbii 3128 |
. . . . . . 7
β’
(βπ§ β
π₯ βπ¦ β π₯ (π§(+gβπ)π¦) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π¦(+gβπΊ)π§) β π₯) |
12 | 6, 11 | bitr4i 277 |
. . . . . 6
β’
(βπ¦ β
π₯ βπ§ β π₯ (π¦(+gβπΊ)π§) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π§(+gβπ)π¦) β π₯) |
13 | 12 | 3anbi3i 1159 |
. . . . 5
β’ ((π₯ β (BaseβπΊ) β§
(0gβπΊ)
β π₯ β§
βπ¦ β π₯ βπ§ β π₯ (π¦(+gβπΊ)π§) β π₯) β (π₯ β (BaseβπΊ) β§ (0gβπΊ) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(+gβπ)π¦) β π₯)) |
14 | 13 | a1i 11 |
. . . 4
β’ (πΊ β Mnd β ((π₯ β (BaseβπΊ) β§
(0gβπΊ)
β π₯ β§
βπ¦ β π₯ βπ§ β π₯ (π¦(+gβπΊ)π§) β π₯) β (π₯ β (BaseβπΊ) β§ (0gβπΊ) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(+gβπ)π¦) β π₯))) |
15 | | eqid 2732 |
. . . . 5
β’
(BaseβπΊ) =
(BaseβπΊ) |
16 | | eqid 2732 |
. . . . 5
β’
(0gβπΊ) = (0gβπΊ) |
17 | 15, 16, 7 | issubm 18683 |
. . . 4
β’ (πΊ β Mnd β (π₯ β (SubMndβπΊ) β (π₯ β (BaseβπΊ) β§ (0gβπΊ) β π₯ β§ βπ¦ β π₯ βπ§ β π₯ (π¦(+gβπΊ)π§) β π₯))) |
18 | 3, 15 | oppgbas 19215 |
. . . . . 6
β’
(BaseβπΊ) =
(Baseβπ) |
19 | 3, 16 | oppgid 19222 |
. . . . . 6
β’
(0gβπΊ) = (0gβπ) |
20 | 18, 19, 8 | issubm 18683 |
. . . . 5
β’ (π β Mnd β (π₯ β (SubMndβπ) β (π₯ β (BaseβπΊ) β§ (0gβπΊ) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(+gβπ)π¦) β π₯))) |
21 | 4, 20 | sylbi 216 |
. . . 4
β’ (πΊ β Mnd β (π₯ β (SubMndβπ) β (π₯ β (BaseβπΊ) β§ (0gβπΊ) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(+gβπ)π¦) β π₯))) |
22 | 14, 17, 21 | 3bitr4d 310 |
. . 3
β’ (πΊ β Mnd β (π₯ β (SubMndβπΊ) β π₯ β (SubMndβπ))) |
23 | 1, 5, 22 | pm5.21nii 379 |
. 2
β’ (π₯ β (SubMndβπΊ) β π₯ β (SubMndβπ)) |
24 | 23 | eqriv 2729 |
1
β’
(SubMndβπΊ) =
(SubMndβπ) |