Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgsubm | Structured version Visualization version GIF version |
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
Ref | Expression |
---|---|
oppgsubm | ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18083 | . . 3 ⊢ (𝑥 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | submrcl 18083 | . . . 4 ⊢ (𝑥 ∈ (SubMnd‘𝑂) → 𝑂 ∈ Mnd) | |
3 | oppggic.o | . . . . 5 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | 3 | oppgmndb 18601 | . . . 4 ⊢ (𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd) |
5 | 2, 4 | sylibr 237 | . . 3 ⊢ (𝑥 ∈ (SubMnd‘𝑂) → 𝐺 ∈ Mnd) |
6 | ralcom 3258 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥) | |
7 | eqid 2738 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | eqid 2738 | . . . . . . . . . 10 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
9 | 7, 3, 8 | oppgplus 18595 | . . . . . . . . 9 ⊢ (𝑧(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑧) |
10 | 9 | eleq1i 2823 | . . . . . . . 8 ⊢ ((𝑧(+g‘𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(+g‘𝐺)𝑧) ∈ 𝑥) |
11 | 10 | 2ralbii 3081 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(+g‘𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥) |
12 | 6, 11 | bitr4i 281 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(+g‘𝑂)𝑦) ∈ 𝑥) |
13 | 12 | 3anbi3i 1160 | . . . . 5 ⊢ ((𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(+g‘𝑂)𝑦) ∈ 𝑥)) |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ Mnd → ((𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(+g‘𝑂)𝑦) ∈ 𝑥))) |
15 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
16 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
17 | 15, 16, 7 | issubm 18084 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝐺)𝑧) ∈ 𝑥))) |
18 | 3, 15 | oppgbas 18597 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝑂) |
19 | 3, 16 | oppgid 18602 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝑂) |
20 | 18, 19, 8 | issubm 18084 | . . . . 5 ⊢ (𝑂 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(+g‘𝑂)𝑦) ∈ 𝑥))) |
21 | 4, 20 | sylbi 220 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(+g‘𝑂)𝑦) ∈ 𝑥))) |
22 | 14, 17, 21 | 3bitr4d 314 | . . 3 ⊢ (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))) |
23 | 1, 5, 22 | pm5.21nii 383 | . 2 ⊢ (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)) |
24 | 23 | eqriv 2735 | 1 ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⊆ wss 3843 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 +gcplusg 16668 0gc0g 16816 Mndcmnd 18027 SubMndcsubmnd 18071 oppgcoppg 18591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-tpos 7921 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-plusg 16681 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-oppg 18592 |
This theorem is referenced by: oppgsubg 18609 gsumzoppg 19183 |
Copyright terms: Public domain | W3C validator |