MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgsubm Structured version   Visualization version   GIF version

Theorem oppgsubm 19350
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgsubm (SubMnd‘𝐺) = (SubMnd‘𝑂)

Proof of Theorem oppgsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18785 . . 3 (𝑥 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2 submrcl 18785 . . . 4 (𝑥 ∈ (SubMnd‘𝑂) → 𝑂 ∈ Mnd)
3 oppggic.o . . . . 5 𝑂 = (oppg𝐺)
43oppgmndb 19343 . . . 4 (𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd)
52, 4sylibr 234 . . 3 (𝑥 ∈ (SubMnd‘𝑂) → 𝐺 ∈ Mnd)
6 ralcom 3274 . . . . . . 7 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
7 eqid 2736 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
8 eqid 2736 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
97, 3, 8oppgplus 19337 . . . . . . . . 9 (𝑧(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑧)
109eleq1i 2826 . . . . . . . 8 ((𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑥)
11102ralbii 3116 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
126, 11bitr4i 278 . . . . . 6 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)
13123anbi3i 1159 . . . . 5 ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥))
1413a1i 11 . . . 4 (𝐺 ∈ Mnd → ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
15 eqid 2736 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
16 eqid 2736 . . . . 5 (0g𝐺) = (0g𝐺)
1715, 16, 7issubm 18786 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)))
183, 15oppgbas 19339 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
193, 16oppgid 19344 . . . . . 6 (0g𝐺) = (0g𝑂)
2018, 19, 8issubm 18786 . . . . 5 (𝑂 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
214, 20sylbi 217 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
2214, 17, 213bitr4d 311 . . 3 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)))
231, 5, 22pm5.21nii 378 . 2 (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))
2423eqriv 2733 1 (SubMnd‘𝐺) = (SubMnd‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Mndcmnd 18717  SubMndcsubmnd 18765  oppgcoppg 19333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-oppg 19334
This theorem is referenced by:  oppgsubg  19351  gsumzoppg  19930
  Copyright terms: Public domain W3C validator