![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpex2leN | Structured version Visualization version GIF version |
Description: There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lhp2at.l | β’ β€ = (leβπΎ) |
lhp2at.a | β’ π΄ = (AtomsβπΎ) |
lhp2at.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
lhpex2leN | β’ ((πΎ β HL β§ π β π») β βπ β π΄ βπ β π΄ (π β€ π β§ π β€ π β§ π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π)) β π β€ π) | |
2 | lhp2at.l | . . . . . 6 β’ β€ = (leβπΎ) | |
3 | lhp2at.a | . . . . . 6 β’ π΄ = (AtomsβπΎ) | |
4 | lhp2at.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
5 | 2, 3, 4 | lhpexle1 39183 | . . . . 5 β’ ((πΎ β HL β§ π β π») β βπ β π΄ (π β€ π β§ π β π)) |
6 | 5 | adantr 480 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π)) β βπ β π΄ (π β€ π β§ π β π)) |
7 | 1, 6 | jca 511 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π)) β (π β€ π β§ βπ β π΄ (π β€ π β§ π β π))) |
8 | necom 2993 | . . . . . . 7 β’ (π β π β π β π) | |
9 | 8 | 3anbi3i 1158 | . . . . . 6 β’ ((π β€ π β§ π β€ π β§ π β π) β (π β€ π β§ π β€ π β§ π β π)) |
10 | 3anass 1094 | . . . . . 6 β’ ((π β€ π β§ π β€ π β§ π β π) β (π β€ π β§ (π β€ π β§ π β π))) | |
11 | 9, 10 | bitri 275 | . . . . 5 β’ ((π β€ π β§ π β€ π β§ π β π) β (π β€ π β§ (π β€ π β§ π β π))) |
12 | 11 | rexbii 3093 | . . . 4 β’ (βπ β π΄ (π β€ π β§ π β€ π β§ π β π) β βπ β π΄ (π β€ π β§ (π β€ π β§ π β π))) |
13 | r19.42v 3189 | . . . 4 β’ (βπ β π΄ (π β€ π β§ (π β€ π β§ π β π)) β (π β€ π β§ βπ β π΄ (π β€ π β§ π β π))) | |
14 | 12, 13 | bitr2i 276 | . . 3 β’ ((π β€ π β§ βπ β π΄ (π β€ π β§ π β π)) β βπ β π΄ (π β€ π β§ π β€ π β§ π β π)) |
15 | 7, 14 | sylib 217 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π)) β βπ β π΄ (π β€ π β§ π β€ π β§ π β π)) |
16 | 2, 3, 4 | lhpexle 39180 | . 2 β’ ((πΎ β HL β§ π β π») β βπ β π΄ π β€ π) |
17 | 15, 16 | reximddv 3170 | 1 β’ ((πΎ β HL β§ π β π») β βπ β π΄ βπ β π΄ (π β€ π β§ π β€ π β§ π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 class class class wbr 5148 βcfv 6543 lecple 17209 Atomscatm 38437 HLchlt 38524 LHypclh 39159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-lhyp 39163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |