![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpex2leN | Structured version Visualization version GIF version |
Description: There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lhp2at.l | ⊢ ≤ = (le‘𝐾) |
lhp2at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhp2at.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpex2leN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 790 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → 𝑝 ≤ 𝑊) | |
2 | lhp2at.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | lhp2at.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lhp2at.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 2, 3, 4 | lhpexle1 36020 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
6 | 5 | adantr 473 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
7 | 1, 6 | jca 508 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
8 | necom 3022 | . . . . . . 7 ⊢ (𝑝 ≠ 𝑞 ↔ 𝑞 ≠ 𝑝) | |
9 | 8 | 3anbi3i 1199 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
10 | 3anass 1117 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
11 | 9, 10 | bitri 267 | . . . . 5 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
12 | 11 | rexbii 3220 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
13 | r19.42v 3271 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
14 | 12, 13 | bitr2i 268 | . . 3 ⊢ ((𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
15 | 7, 14 | sylib 210 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
16 | 2, 3, 4 | lhpexle 36017 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑊) |
17 | 15, 16 | reximddv 3196 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∃wrex 3088 class class class wbr 4841 ‘cfv 6099 lecple 16270 Atomscatm 35275 HLchlt 35362 LHypclh 35996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-proset 17239 df-poset 17257 df-plt 17269 df-lub 17285 df-glb 17286 df-join 17287 df-meet 17288 df-p0 17350 df-p1 17351 df-lat 17357 df-clat 17419 df-oposet 35188 df-ol 35190 df-oml 35191 df-covers 35278 df-ats 35279 df-atl 35310 df-cvlat 35334 df-hlat 35363 df-lhyp 36000 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |