Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpex2leN | Structured version Visualization version GIF version |
Description: There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lhp2at.l | ⊢ ≤ = (le‘𝐾) |
lhp2at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhp2at.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpex2leN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → 𝑝 ≤ 𝑊) | |
2 | lhp2at.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | lhp2at.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lhp2at.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 2, 3, 4 | lhpexle1 37949 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
6 | 5 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
7 | 1, 6 | jca 511 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
8 | necom 2996 | . . . . . . 7 ⊢ (𝑝 ≠ 𝑞 ↔ 𝑞 ≠ 𝑝) | |
9 | 8 | 3anbi3i 1157 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
10 | 3anass 1093 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
11 | 9, 10 | bitri 274 | . . . . 5 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
12 | 11 | rexbii 3177 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
13 | r19.42v 3276 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
14 | 12, 13 | bitr2i 275 | . . 3 ⊢ ((𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
15 | 7, 14 | sylib 217 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
16 | 2, 3, 4 | lhpexle 37946 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑊) |
17 | 15, 16 | reximddv 3203 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 lecple 16895 Atomscatm 37204 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |