Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpex2leN Structured version   Visualization version   GIF version

Theorem lhpex2leN 39996
Description: There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhp2at.l = (le‘𝐾)
lhp2at.a 𝐴 = (Atoms‘𝐾)
lhp2at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpex2leN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑊,𝑝,𝑞

Proof of Theorem lhpex2leN
StepHypRef Expression
1 simprr 773 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → 𝑝 𝑊)
2 lhp2at.l . . . . . 6 = (le‘𝐾)
3 lhp2at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 lhp2at.h . . . . . 6 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 39991 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
65adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
71, 6jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
8 necom 2992 . . . . . . 7 (𝑝𝑞𝑞𝑝)
983anbi3i 1158 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊𝑞 𝑊𝑞𝑝))
10 3anass 1094 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑞𝑝) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
119, 10bitri 275 . . . . 5 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
1211rexbii 3092 . . . 4 (∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ ∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
13 r19.42v 3189 . . . 4 (∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)) ↔ (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
1412, 13bitr2i 276 . . 3 ((𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)) ↔ ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
157, 14sylib 218 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
162, 3, 4lhpexle 39988 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
1715, 16reximddv 3169 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  lecple 17305  Atomscatm 39245  HLchlt 39332  LHypclh 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator