Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpex2leN Structured version   Visualization version   GIF version

Theorem lhpex2leN 40037
Description: There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhp2at.l = (le‘𝐾)
lhp2at.a 𝐴 = (Atoms‘𝐾)
lhp2at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpex2leN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑊,𝑝,𝑞

Proof of Theorem lhpex2leN
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → 𝑝 𝑊)
2 lhp2at.l . . . . . 6 = (le‘𝐾)
3 lhp2at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 lhp2at.h . . . . . 6 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 40032 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
65adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
71, 6jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
8 necom 2986 . . . . . . 7 (𝑝𝑞𝑞𝑝)
983anbi3i 1159 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊𝑞 𝑊𝑞𝑝))
10 3anass 1094 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑞𝑝) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
119, 10bitri 275 . . . . 5 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
1211rexbii 3084 . . . 4 (∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ ∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
13 r19.42v 3177 . . . 4 (∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)) ↔ (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
1412, 13bitr2i 276 . . 3 ((𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)) ↔ ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
157, 14sylib 218 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
162, 3, 4lhpexle 40029 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
1715, 16reximddv 3157 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  lecple 17283  Atomscatm 39286  HLchlt 39373  LHypclh 40008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-lhyp 40012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator