| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpex2leN | Structured version Visualization version GIF version | ||
| Description: There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lhp2at.l | ⊢ ≤ = (le‘𝐾) |
| lhp2at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhp2at.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpex2leN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → 𝑝 ≤ 𝑊) | |
| 2 | lhp2at.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | lhp2at.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | lhp2at.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 2, 3, 4 | lhpexle1 40002 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
| 7 | 1, 6 | jca 511 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
| 8 | necom 2978 | . . . . . . 7 ⊢ (𝑝 ≠ 𝑞 ↔ 𝑞 ≠ 𝑝) | |
| 9 | 8 | 3anbi3i 1159 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
| 10 | 3anass 1094 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
| 11 | 9, 10 | bitri 275 | . . . . 5 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
| 12 | 11 | rexbii 3076 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
| 13 | r19.42v 3169 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
| 14 | 12, 13 | bitr2i 276 | . . 3 ⊢ ((𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
| 15 | 7, 14 | sylib 218 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
| 16 | 2, 3, 4 | lhpexle 39999 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑊) |
| 17 | 15, 16 | reximddv 3149 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 lecple 17227 Atomscatm 39256 HLchlt 39343 LHypclh 39978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lhyp 39982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |