Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpex2leN | Structured version Visualization version GIF version |
Description: There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lhp2at.l | ⊢ ≤ = (le‘𝐾) |
lhp2at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhp2at.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpex2leN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → 𝑝 ≤ 𝑊) | |
2 | lhp2at.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | lhp2at.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lhp2at.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 2, 3, 4 | lhpexle1 38022 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
6 | 5 | adantr 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
7 | 1, 6 | jca 512 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
8 | necom 2997 | . . . . . . 7 ⊢ (𝑝 ≠ 𝑞 ↔ 𝑞 ≠ 𝑝) | |
9 | 8 | 3anbi3i 1158 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
10 | 3anass 1094 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
11 | 9, 10 | bitri 274 | . . . . 5 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
12 | 11 | rexbii 3181 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
13 | r19.42v 3279 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
14 | 12, 13 | bitr2i 275 | . . 3 ⊢ ((𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
15 | 7, 14 | sylib 217 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
16 | 2, 3, 4 | lhpexle 38019 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑊) |
17 | 15, 16 | reximddv 3204 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 lecple 16969 Atomscatm 37277 HLchlt 37364 LHypclh 37998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |