Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpex2leN Structured version   Visualization version   GIF version

Theorem lhpex2leN 39970
Description: There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhp2at.l = (le‘𝐾)
lhp2at.a 𝐴 = (Atoms‘𝐾)
lhp2at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpex2leN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑊,𝑝,𝑞

Proof of Theorem lhpex2leN
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → 𝑝 𝑊)
2 lhp2at.l . . . . . 6 = (le‘𝐾)
3 lhp2at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 lhp2at.h . . . . . 6 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 39965 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
65adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
71, 6jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
8 necom 3000 . . . . . . 7 (𝑝𝑞𝑞𝑝)
983anbi3i 1159 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊𝑞 𝑊𝑞𝑝))
10 3anass 1095 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑞𝑝) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
119, 10bitri 275 . . . . 5 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
1211rexbii 3100 . . . 4 (∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ ∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
13 r19.42v 3197 . . . 4 (∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)) ↔ (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
1412, 13bitr2i 276 . . 3 ((𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)) ↔ ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
157, 14sylib 218 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
162, 3, 4lhpexle 39962 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
1715, 16reximddv 3177 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  lecple 17318  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator