Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddir Structured version   Visualization version   GIF version

Theorem xrge0adddir 31203
Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Assertion
Ref Expression
xrge0adddir ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))

Proof of Theorem xrge0adddir
StepHypRef Expression
1 iccssxr 13091 . . . 4 (0[,]+∞) ⊆ ℝ*
2 simpl1 1189 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3915 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ ℝ*)
4 simpl2 1190 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,]+∞))
51, 4sselid 3915 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ*)
6 rge0ssre 13117 . . . 4 (0[,)+∞) ⊆ ℝ
7 simpr 484 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ (0[,)+∞))
86, 7sselid 3915 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ ℝ)
9 xadddir 12959 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
103, 5, 8, 9syl3anc 1369 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
11 simpll1 1210 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ (0[,]+∞))
121, 11sselid 3915 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*)
13 simpll2 1211 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
141, 13sselid 3915 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
1512, 14xaddcld 12964 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
16 simpr 484 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < 𝐴)
17 xrge0addgt0 31202 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
1811, 13, 16, 17syl21anc 834 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
19 xmulpnf1 12937 . . . . . 6 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 < (𝐴 +𝑒 𝐵)) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
2015, 18, 19syl2anc 583 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
21 oveq2 7263 . . . . . 6 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
2221ad2antlr 723 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
23 simpll3 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐶 ∈ (0[,]+∞))
24 ge0xmulcl 13124 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
2513, 23, 24syl2anc 583 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
261, 25sselid 3915 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
27 xrge0neqmnf 13113 . . . . . . 7 ((𝐵 ·e 𝐶) ∈ (0[,]+∞) → (𝐵 ·e 𝐶) ≠ -∞)
2825, 27syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ≠ -∞)
29 xaddpnf2 12890 . . . . . 6 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3026, 28, 29syl2anc 583 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3120, 22, 303eqtr4d 2788 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
32 oveq2 7263 . . . . . . 7 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
3332ad2antlr 723 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
34 xmulpnf1 12937 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3512, 16, 34syl2anc 583 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3633, 35eqtrd 2778 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = +∞)
3736oveq1d 7270 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
3831, 37eqtr4d 2781 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
39 simpll3 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ (0[,]+∞))
401, 39sselid 3915 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
41 xmul02 12931 . . . . . . 7 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
4240, 41syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
4342oveq1d 7270 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (0 +𝑒 (𝐵 ·e 𝐶)))
44 oveq1 7262 . . . . . . 7 (0 = 𝐴 → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4544adantl 481 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4645oveq1d 7270 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
47 simpll2 1211 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ (0[,]+∞))
481, 47sselid 3915 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
4948, 40xmulcld 12965 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
50 xaddid2 12905 . . . . . 6 ((𝐵 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5149, 50syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5243, 46, 513eqtr3d 2786 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
53 xaddid2 12905 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
5448, 53syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 𝐵) = 𝐵)
5554oveq1d 7270 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = (𝐵 ·e 𝐶))
56 oveq1 7262 . . . . . 6 (0 = 𝐴 → (0 +𝑒 𝐵) = (𝐴 +𝑒 𝐵))
5756oveq1d 7270 . . . . 5 (0 = 𝐴 → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5857adantl 481 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5952, 55, 583eqtr2rd 2785 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
60 0xr 10953 . . . . 5 0 ∈ ℝ*
6160a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ∈ ℝ*)
62 simpl1 1189 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ (0[,]+∞))
631, 62sselid 3915 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
64 pnfxr 10960 . . . . . 6 +∞ ∈ ℝ*
6564a1i 11 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → +∞ ∈ ℝ*)
66 iccgelb 13064 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
6761, 65, 62, 66syl3anc 1369 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ≤ 𝐴)
68 xrleloe 12807 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
6968biimpa 476 . . . 4 (((0 ∈ ℝ*𝐴 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
7061, 63, 67, 69syl21anc 834 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → (0 < 𝐴 ∨ 0 = 𝐴))
7138, 59, 70mpjaodan 955 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
72 0lepnf 12797 . . . . 5 0 ≤ +∞
73 eliccelico 31000 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7460, 64, 72, 73mp3an 1459 . . . 4 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
75743anbi3i 1157 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ↔ (𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7675simp3bi 1145 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
7710, 71, 76mpjaodan 955 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941   +𝑒 cxad 12775   ·e cxmu 12776  [,)cico 13010  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015
This theorem is referenced by:  xrge0adddi  31204  xrge0slmod  31450  esummulc1  31949
  Copyright terms: Public domain W3C validator