Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddir Structured version   Visualization version   GIF version

Theorem xrge0adddir 31953
Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Assertion
Ref Expression
xrge0adddir ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))

Proof of Theorem xrge0adddir
StepHypRef Expression
1 iccssxr 13357 . . . 4 (0[,]+∞) ⊆ ℝ*
2 simpl1 1191 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3945 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ ℝ*)
4 simpl2 1192 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,]+∞))
51, 4sselid 3945 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ*)
6 rge0ssre 13383 . . . 4 (0[,)+∞) ⊆ ℝ
7 simpr 485 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ (0[,)+∞))
86, 7sselid 3945 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ ℝ)
9 xadddir 13225 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
103, 5, 8, 9syl3anc 1371 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
11 simpll1 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ (0[,]+∞))
121, 11sselid 3945 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*)
13 simpll2 1213 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
141, 13sselid 3945 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
1512, 14xaddcld 13230 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
16 simpr 485 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < 𝐴)
17 xrge0addgt0 31952 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
1811, 13, 16, 17syl21anc 836 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
19 xmulpnf1 13203 . . . . . 6 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 < (𝐴 +𝑒 𝐵)) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
2015, 18, 19syl2anc 584 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
21 oveq2 7370 . . . . . 6 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
2221ad2antlr 725 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
23 simpll3 1214 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐶 ∈ (0[,]+∞))
24 ge0xmulcl 13390 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
2513, 23, 24syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
261, 25sselid 3945 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
27 xrge0neqmnf 13379 . . . . . . 7 ((𝐵 ·e 𝐶) ∈ (0[,]+∞) → (𝐵 ·e 𝐶) ≠ -∞)
2825, 27syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ≠ -∞)
29 xaddpnf2 13156 . . . . . 6 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3026, 28, 29syl2anc 584 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3120, 22, 303eqtr4d 2781 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
32 oveq2 7370 . . . . . . 7 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
3332ad2antlr 725 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
34 xmulpnf1 13203 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3512, 16, 34syl2anc 584 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3633, 35eqtrd 2771 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = +∞)
3736oveq1d 7377 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
3831, 37eqtr4d 2774 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
39 simpll3 1214 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ (0[,]+∞))
401, 39sselid 3945 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
41 xmul02 13197 . . . . . . 7 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
4240, 41syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
4342oveq1d 7377 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (0 +𝑒 (𝐵 ·e 𝐶)))
44 oveq1 7369 . . . . . . 7 (0 = 𝐴 → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4544adantl 482 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4645oveq1d 7377 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
47 simpll2 1213 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ (0[,]+∞))
481, 47sselid 3945 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
4948, 40xmulcld 13231 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
50 xaddlid 13171 . . . . . 6 ((𝐵 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5149, 50syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5243, 46, 513eqtr3d 2779 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
53 xaddlid 13171 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
5448, 53syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 𝐵) = 𝐵)
5554oveq1d 7377 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = (𝐵 ·e 𝐶))
56 oveq1 7369 . . . . . 6 (0 = 𝐴 → (0 +𝑒 𝐵) = (𝐴 +𝑒 𝐵))
5756oveq1d 7377 . . . . 5 (0 = 𝐴 → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5857adantl 482 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5952, 55, 583eqtr2rd 2778 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
60 0xr 11211 . . . . 5 0 ∈ ℝ*
6160a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ∈ ℝ*)
62 simpl1 1191 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ (0[,]+∞))
631, 62sselid 3945 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
64 pnfxr 11218 . . . . . 6 +∞ ∈ ℝ*
6564a1i 11 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → +∞ ∈ ℝ*)
66 iccgelb 13330 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
6761, 65, 62, 66syl3anc 1371 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ≤ 𝐴)
68 xrleloe 13073 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
6968biimpa 477 . . . 4 (((0 ∈ ℝ*𝐴 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
7061, 63, 67, 69syl21anc 836 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → (0 < 𝐴 ∨ 0 = 𝐴))
7138, 59, 70mpjaodan 957 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
72 0lepnf 13062 . . . . 5 0 ≤ +∞
73 eliccelico 31748 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7460, 64, 72, 73mp3an 1461 . . . 4 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
75743anbi3i 1159 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ↔ (𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7675simp3bi 1147 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
7710, 71, 76mpjaodan 957 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5110  (class class class)co 7362  cr 11059  0cc0 11060  +∞cpnf 11195  -∞cmnf 11196  *cxr 11197   < clt 11198  cle 11199   +𝑒 cxad 13040   ·e cxmu 13041  [,)cico 13276  [,]cicc 13277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ico 13280  df-icc 13281
This theorem is referenced by:  xrge0adddi  31954  xrge0slmod  32211  esummulc1  32769
  Copyright terms: Public domain W3C validator