Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddir Structured version   Visualization version   GIF version

Theorem xrge0adddir 33005
Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Assertion
Ref Expression
xrge0adddir ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))

Proof of Theorem xrge0adddir
StepHypRef Expression
1 iccssxr 13466 . . . 4 (0[,]+∞) ⊆ ℝ*
2 simpl1 1190 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3992 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ ℝ*)
4 simpl2 1191 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,]+∞))
51, 4sselid 3992 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ*)
6 rge0ssre 13492 . . . 4 (0[,)+∞) ⊆ ℝ
7 simpr 484 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ (0[,)+∞))
86, 7sselid 3992 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ ℝ)
9 xadddir 13334 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
103, 5, 8, 9syl3anc 1370 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
11 simpll1 1211 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ (0[,]+∞))
121, 11sselid 3992 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*)
13 simpll2 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
141, 13sselid 3992 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
1512, 14xaddcld 13339 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
16 simpr 484 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < 𝐴)
17 xrge0addgt0 33004 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
1811, 13, 16, 17syl21anc 838 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
19 xmulpnf1 13312 . . . . . 6 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 < (𝐴 +𝑒 𝐵)) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
2015, 18, 19syl2anc 584 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
21 oveq2 7438 . . . . . 6 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
2221ad2antlr 727 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
23 simpll3 1213 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐶 ∈ (0[,]+∞))
24 ge0xmulcl 13499 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
2513, 23, 24syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
261, 25sselid 3992 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
27 xrge0neqmnf 13488 . . . . . . 7 ((𝐵 ·e 𝐶) ∈ (0[,]+∞) → (𝐵 ·e 𝐶) ≠ -∞)
2825, 27syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ≠ -∞)
29 xaddpnf2 13265 . . . . . 6 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3026, 28, 29syl2anc 584 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3120, 22, 303eqtr4d 2784 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
32 oveq2 7438 . . . . . . 7 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
3332ad2antlr 727 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
34 xmulpnf1 13312 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3512, 16, 34syl2anc 584 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3633, 35eqtrd 2774 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = +∞)
3736oveq1d 7445 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
3831, 37eqtr4d 2777 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
39 simpll3 1213 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ (0[,]+∞))
401, 39sselid 3992 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
41 xmul02 13306 . . . . . . 7 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
4240, 41syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
4342oveq1d 7445 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (0 +𝑒 (𝐵 ·e 𝐶)))
44 oveq1 7437 . . . . . . 7 (0 = 𝐴 → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4544adantl 481 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4645oveq1d 7445 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
47 simpll2 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ (0[,]+∞))
481, 47sselid 3992 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
4948, 40xmulcld 13340 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
50 xaddlid 13280 . . . . . 6 ((𝐵 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5149, 50syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5243, 46, 513eqtr3d 2782 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
53 xaddlid 13280 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
5448, 53syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 𝐵) = 𝐵)
5554oveq1d 7445 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = (𝐵 ·e 𝐶))
56 oveq1 7437 . . . . . 6 (0 = 𝐴 → (0 +𝑒 𝐵) = (𝐴 +𝑒 𝐵))
5756oveq1d 7445 . . . . 5 (0 = 𝐴 → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5857adantl 481 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5952, 55, 583eqtr2rd 2781 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
60 0xr 11305 . . . . 5 0 ∈ ℝ*
6160a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ∈ ℝ*)
62 simpl1 1190 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ (0[,]+∞))
631, 62sselid 3992 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
64 pnfxr 11312 . . . . . 6 +∞ ∈ ℝ*
6564a1i 11 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → +∞ ∈ ℝ*)
66 iccgelb 13439 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
6761, 65, 62, 66syl3anc 1370 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ≤ 𝐴)
68 xrleloe 13182 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
6968biimpa 476 . . . 4 (((0 ∈ ℝ*𝐴 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
7061, 63, 67, 69syl21anc 838 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → (0 < 𝐴 ∨ 0 = 𝐴))
7138, 59, 70mpjaodan 960 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
72 0lepnf 13171 . . . . 5 0 ≤ +∞
73 eliccelico 32785 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7460, 64, 72, 73mp3an 1460 . . . 4 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
75743anbi3i 1158 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ↔ (𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7675simp3bi 1146 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
7710, 71, 76mpjaodan 960 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  (class class class)co 7430  cr 11151  0cc0 11152  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293   +𝑒 cxad 13149   ·e cxmu 13150  [,)cico 13385  [,]cicc 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-icc 13390
This theorem is referenced by:  xrge0adddi  33006  xrge0slmod  33355  esummulc1  34061
  Copyright terms: Public domain W3C validator