Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddir Structured version   Visualization version   GIF version

Theorem xrge0adddir 31301
Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Assertion
Ref Expression
xrge0adddir ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))

Proof of Theorem xrge0adddir
StepHypRef Expression
1 iccssxr 13162 . . . 4 (0[,]+∞) ⊆ ℝ*
2 simpl1 1190 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3919 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ ℝ*)
4 simpl2 1191 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,]+∞))
51, 4sselid 3919 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ*)
6 rge0ssre 13188 . . . 4 (0[,)+∞) ⊆ ℝ
7 simpr 485 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ (0[,)+∞))
86, 7sselid 3919 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ ℝ)
9 xadddir 13030 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
103, 5, 8, 9syl3anc 1370 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
11 simpll1 1211 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ (0[,]+∞))
121, 11sselid 3919 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*)
13 simpll2 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
141, 13sselid 3919 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
1512, 14xaddcld 13035 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
16 simpr 485 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < 𝐴)
17 xrge0addgt0 31300 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
1811, 13, 16, 17syl21anc 835 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
19 xmulpnf1 13008 . . . . . 6 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 < (𝐴 +𝑒 𝐵)) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
2015, 18, 19syl2anc 584 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
21 oveq2 7283 . . . . . 6 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
2221ad2antlr 724 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
23 simpll3 1213 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐶 ∈ (0[,]+∞))
24 ge0xmulcl 13195 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
2513, 23, 24syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
261, 25sselid 3919 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
27 xrge0neqmnf 13184 . . . . . . 7 ((𝐵 ·e 𝐶) ∈ (0[,]+∞) → (𝐵 ·e 𝐶) ≠ -∞)
2825, 27syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ≠ -∞)
29 xaddpnf2 12961 . . . . . 6 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3026, 28, 29syl2anc 584 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3120, 22, 303eqtr4d 2788 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
32 oveq2 7283 . . . . . . 7 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
3332ad2antlr 724 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
34 xmulpnf1 13008 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3512, 16, 34syl2anc 584 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3633, 35eqtrd 2778 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = +∞)
3736oveq1d 7290 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
3831, 37eqtr4d 2781 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
39 simpll3 1213 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ (0[,]+∞))
401, 39sselid 3919 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
41 xmul02 13002 . . . . . . 7 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
4240, 41syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
4342oveq1d 7290 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (0 +𝑒 (𝐵 ·e 𝐶)))
44 oveq1 7282 . . . . . . 7 (0 = 𝐴 → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4544adantl 482 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4645oveq1d 7290 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
47 simpll2 1212 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ (0[,]+∞))
481, 47sselid 3919 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
4948, 40xmulcld 13036 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
50 xaddid2 12976 . . . . . 6 ((𝐵 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5149, 50syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5243, 46, 513eqtr3d 2786 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
53 xaddid2 12976 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
5448, 53syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 𝐵) = 𝐵)
5554oveq1d 7290 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = (𝐵 ·e 𝐶))
56 oveq1 7282 . . . . . 6 (0 = 𝐴 → (0 +𝑒 𝐵) = (𝐴 +𝑒 𝐵))
5756oveq1d 7290 . . . . 5 (0 = 𝐴 → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5857adantl 482 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5952, 55, 583eqtr2rd 2785 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
60 0xr 11022 . . . . 5 0 ∈ ℝ*
6160a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ∈ ℝ*)
62 simpl1 1190 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ (0[,]+∞))
631, 62sselid 3919 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
64 pnfxr 11029 . . . . . 6 +∞ ∈ ℝ*
6564a1i 11 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → +∞ ∈ ℝ*)
66 iccgelb 13135 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
6761, 65, 62, 66syl3anc 1370 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ≤ 𝐴)
68 xrleloe 12878 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
6968biimpa 477 . . . 4 (((0 ∈ ℝ*𝐴 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
7061, 63, 67, 69syl21anc 835 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → (0 < 𝐴 ∨ 0 = 𝐴))
7138, 59, 70mpjaodan 956 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
72 0lepnf 12868 . . . . 5 0 ≤ +∞
73 eliccelico 31098 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7460, 64, 72, 73mp3an 1460 . . . 4 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
75743anbi3i 1158 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ↔ (𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7675simp3bi 1146 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
7710, 71, 76mpjaodan 956 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010   +𝑒 cxad 12846   ·e cxmu 12847  [,)cico 13081  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086
This theorem is referenced by:  xrge0adddi  31302  xrge0slmod  31548  esummulc1  32049
  Copyright terms: Public domain W3C validator