Proof of Theorem funcf2lem
Step | Hyp | Ref
| Expression |
1 | | elixp2 8647 |
. 2
⊢ (𝐺 ∈ X𝑧 ∈
(𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)))) |
2 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝐺‘〈𝑥, 𝑦〉)) |
3 | | df-ov 7258 |
. . . . . . 7
⊢ (𝑥𝐺𝑦) = (𝐺‘〈𝑥, 𝑦〉) |
4 | 2, 3 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝑥𝐺𝑦)) |
5 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
6 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
7 | 5, 6 | op1std 7814 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
8 | 7 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘𝑥)) |
9 | 5, 6 | op2ndd 7815 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
10 | 9 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑧)) = (𝐹‘𝑦)) |
11 | 8, 10 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
12 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝐻‘〈𝑥, 𝑦〉)) |
13 | | df-ov 7258 |
. . . . . . . 8
⊢ (𝑥𝐻𝑦) = (𝐻‘〈𝑥, 𝑦〉) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝑥𝐻𝑦)) |
15 | 11, 14 | oveq12d 7273 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦))) |
16 | 4, 15 | eleq12d 2833 |
. . . . 5
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦)))) |
17 | | ovex 7288 |
. . . . . 6
⊢ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∈ V |
18 | | ovex 7288 |
. . . . . 6
⊢ (𝑥𝐻𝑦) ∈ V |
19 | 17, 18 | elmap 8617 |
. . . . 5
⊢ ((𝑥𝐺𝑦) ∈ (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
20 | 16, 19 | bitrdi 286 |
. . . 4
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
21 | 20 | ralxp 5739 |
. . 3
⊢
(∀𝑧 ∈
(𝐵 × 𝐵)(𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
22 | 21 | 3anbi3i 1157 |
. 2
⊢ ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺‘𝑧) ∈ (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
23 | 1, 22 | bitri 274 |
1
⊢ (𝐺 ∈ X𝑧 ∈
(𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |