Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcf2lem Structured version   Visualization version   GIF version

Theorem funcf2lem 45915
Description: A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
funcf2lem (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧

Proof of Theorem funcf2lem
StepHypRef Expression
1 elixp2 8560 . 2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
2 fveq2 6695 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
3 df-ov 7194 . . . . . . 7 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2789 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
5 vex 3402 . . . . . . . . . 10 𝑥 ∈ V
6 vex 3402 . . . . . . . . . 10 𝑦 ∈ V
75, 6op1std 7749 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
87fveq2d 6699 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑧)) = (𝐹𝑥))
95, 6op2ndd 7750 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
109fveq2d 6699 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑧)) = (𝐹𝑦))
118, 10oveq12d 7209 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) = ((𝐹𝑥)𝐽(𝐹𝑦)))
12 fveq2 6695 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
13 df-ov 7194 . . . . . . . 8 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
1412, 13eqtr4di 2789 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
1511, 14oveq12d 7209 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
164, 15eleq12d 2825 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦))))
17 ovex 7224 . . . . . 6 ((𝐹𝑥)𝐽(𝐹𝑦)) ∈ V
18 ovex 7224 . . . . . 6 (𝑥𝐻𝑦) ∈ V
1917, 18elmap 8530 . . . . 5 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)𝐽(𝐹𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
2016, 19bitrdi 290 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
2120ralxp 5695 . . 3 (∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
22213anbi3i 1161 . 2 ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ (𝐵 × 𝐵)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
231, 22bitri 278 1 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  cop 4533   × cxp 5534   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  m cmap 8486  Xcixp 8556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-ixp 8557
This theorem is referenced by:  functhinc  45942
  Copyright terms: Public domain W3C validator