| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > btwnouttr | Structured version Visualization version GIF version | ||
| Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 14-Jun-2013.) |
| Ref | Expression |
|---|---|
| btwnouttr | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) | |
| 2 | simp2r 1201 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) | |
| 3 | simp3r 1203 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) | |
| 4 | simp2l 1200 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) | |
| 5 | necom 2978 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵)) |
| 7 | simp3l 1202 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) | |
| 8 | btwncom 35996 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ 𝐵 Btwn 〈𝐶, 𝐴〉)) | |
| 9 | 1, 2, 4, 7, 8 | syl13anc 1374 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ 𝐵 Btwn 〈𝐶, 𝐴〉)) |
| 10 | btwncom 35996 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐵, 𝐷〉 ↔ 𝐶 Btwn 〈𝐷, 𝐵〉)) | |
| 11 | 1, 7, 2, 3, 10 | syl13anc 1374 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐵, 𝐷〉 ↔ 𝐶 Btwn 〈𝐷, 𝐵〉)) |
| 12 | 6, 9, 11 | 3anbi123d 1438 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) ↔ (𝐶 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉))) |
| 13 | 3ancomb 1098 | . . . . . 6 ⊢ ((𝐶 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉) ↔ (𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉)) | |
| 14 | 12, 13 | bitrdi 287 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) ↔ (𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉))) |
| 15 | 14 | biimpa 476 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → (𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉)) |
| 16 | btwnouttr2 36004 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉) → 𝐵 Btwn 〈𝐷, 𝐴〉)) | |
| 17 | 1, 3, 7, 2, 4, 16 | syl122anc 1381 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉) → 𝐵 Btwn 〈𝐷, 𝐴〉)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → ((𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉) → 𝐵 Btwn 〈𝐷, 𝐴〉)) |
| 19 | 15, 18 | mpd 15 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → 𝐵 Btwn 〈𝐷, 𝐴〉) |
| 20 | 1, 2, 3, 4, 19 | btwncomand 35997 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → 𝐵 Btwn 〈𝐴, 𝐷〉) |
| 21 | 20 | ex 412 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 〈cop 4591 class class class wbr 5102 ‘cfv 6499 ℕcn 12164 𝔼cee 28869 Btwn cbtwn 28870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15431 df-sum 15630 df-ee 28872 df-btwn 28873 df-cgr 28874 df-ofs 35965 |
| This theorem is referenced by: lineunray 36129 lineelsb2 36130 |
| Copyright terms: Public domain | W3C validator |