| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > btwnouttr | Structured version Visualization version GIF version | ||
| Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 14-Jun-2013.) |
| Ref | Expression |
|---|---|
| btwnouttr | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) | |
| 2 | simp2r 1201 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) | |
| 3 | simp3r 1203 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) | |
| 4 | simp2l 1200 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) | |
| 5 | necom 2986 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵)) |
| 7 | simp3l 1202 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) | |
| 8 | btwncom 36037 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ 𝐵 Btwn 〈𝐶, 𝐴〉)) | |
| 9 | 1, 2, 4, 7, 8 | syl13anc 1374 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ 𝐵 Btwn 〈𝐶, 𝐴〉)) |
| 10 | btwncom 36037 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐵, 𝐷〉 ↔ 𝐶 Btwn 〈𝐷, 𝐵〉)) | |
| 11 | 1, 7, 2, 3, 10 | syl13anc 1374 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐵, 𝐷〉 ↔ 𝐶 Btwn 〈𝐷, 𝐵〉)) |
| 12 | 6, 9, 11 | 3anbi123d 1438 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) ↔ (𝐶 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉))) |
| 13 | 3ancomb 1098 | . . . . . 6 ⊢ ((𝐶 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉) ↔ (𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉)) | |
| 14 | 12, 13 | bitrdi 287 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) ↔ (𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉))) |
| 15 | 14 | biimpa 476 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → (𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉)) |
| 16 | btwnouttr2 36045 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉) → 𝐵 Btwn 〈𝐷, 𝐴〉)) | |
| 17 | 1, 3, 7, 2, 4, 16 | syl122anc 1381 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉) → 𝐵 Btwn 〈𝐷, 𝐴〉)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → ((𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈𝐷, 𝐵〉 ∧ 𝐵 Btwn 〈𝐶, 𝐴〉) → 𝐵 Btwn 〈𝐷, 𝐴〉)) |
| 19 | 15, 18 | mpd 15 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → 𝐵 Btwn 〈𝐷, 𝐴〉) |
| 20 | 1, 2, 3, 4, 19 | btwncomand 36038 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉)) → 𝐵 Btwn 〈𝐴, 𝐷〉) |
| 21 | 20 | ex 412 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2933 〈cop 4612 class class class wbr 5124 ‘cfv 6536 ℕcn 12245 𝔼cee 28872 Btwn cbtwn 28873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-ee 28875 df-btwn 28876 df-cgr 28877 df-ofs 36006 |
| This theorem is referenced by: lineunray 36170 lineelsb2 36171 |
| Copyright terms: Public domain | W3C validator |