Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknon2num | Structured version Visualization version GIF version |
Description: In a 𝐾-regular graph 𝐺, there are 𝐾 closed walks on vertex 𝑋 of length 2. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon2num | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺) | |
2 | eqid 2739 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2739 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 1, 2, 3 | clwwlknon2x 28446 | . . . 4 ⊢ (𝑋(ClWWalksNOn‘𝐺)2) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)} |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)2) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)}) |
6 | 5 | fveq2d 6772 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = (♯‘{𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)})) |
7 | 3ancomb 1097 | . . . . 5 ⊢ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)) | |
8 | 7 | rabbii 3405 | . . . 4 ⊢ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)} |
9 | 8 | fveq2i 6771 | . . 3 ⊢ (♯‘{𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)}) |
10 | 2 | rusgrnumwrdl2 27934 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘{𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
11 | 9, 10 | eqtr3id 2793 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘{𝑤 ∈ Word (Vtx‘𝐺) ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)}) = 𝐾) |
12 | 6, 11 | eqtrd 2779 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 {cpr 4568 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 2c2 12011 ♯chash 14025 Word cword 14198 Vtxcvtx 27347 Edgcedg 27398 RegUSGraph crusgr 27904 ClWWalksNOncclwwlknon 28430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-xadd 12831 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-lsw 14247 df-edg 27399 df-uhgr 27409 df-ushgr 27410 df-upgr 27433 df-umgr 27434 df-uspgr 27501 df-usgr 27502 df-nbgr 27681 df-vtxdg 27814 df-rgr 27905 df-rusgr 27906 df-clwwlk 28325 df-clwwlkn 28368 df-clwwlknon 28431 |
This theorem is referenced by: clwlknon2num 28711 numclwwlk5lem 28730 |
Copyright terms: Public domain | W3C validator |