MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub23 Structured version   Visualization version   GIF version

Theorem ablsubsub23 19763
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v 𝑉 = (Base‘𝐺)
ablsubsub23.m = (-g𝐺)
Assertion
Ref Expression
ablsubsub23 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ Abel)
2 simpr3 1194 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
3 simpr2 1193 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
4 ablsubsub23.v . . . . 5 𝑉 = (Base‘𝐺)
5 eqid 2727 . . . . 5 (+g𝐺) = (+g𝐺)
64, 5ablcom 19738 . . . 4 ((𝐺 ∈ Abel ∧ 𝐶𝑉𝐵𝑉) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
71, 2, 3, 6syl3anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
87eqeq1d 2729 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐶(+g𝐺)𝐵) = 𝐴 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
9 ablgrp 19724 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
10 ablsubsub23.m . . . 4 = (-g𝐺)
114, 5, 10grpsubadd 18968 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
129, 11sylan 579 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
13 3ancomb 1097 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ (𝐴𝑉𝐶𝑉𝐵𝑉))
1413biimpi 215 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐶𝑉𝐵𝑉))
154, 5, 10grpsubadd 18968 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐶𝑉𝐵𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
169, 14, 15syl2an 595 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
178, 12, 163bitr4d 311 1 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  cfv 6542  (class class class)co 7414  Basecbs 17165  +gcplusg 17218  Grpcgrp 18875  -gcsg 18877  Abelcabl 19720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-0g 17408  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-grp 18878  df-minusg 18879  df-sbg 18880  df-cmn 19721  df-abl 19722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator