![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsubsub23 | Structured version Visualization version GIF version |
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
ablsubsub23.v | ⊢ 𝑉 = (Base‘𝐺) |
ablsubsub23.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ablsubsub23 | ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ Abel) | |
2 | simpr3 1196 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
3 | simpr2 1195 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
4 | ablsubsub23.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
5 | eqid 2732 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 4, 5 | ablcom 19661 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) |
7 | 1, 2, 3, 6 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) |
8 | 7 | eqeq1d 2734 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐶(+g‘𝐺)𝐵) = 𝐴 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
9 | ablgrp 19647 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
10 | ablsubsub23.m | . . . 4 ⊢ − = (-g‘𝐺) | |
11 | 4, 5, 10 | grpsubadd 18907 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) |
12 | 9, 11 | sylan 580 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) |
13 | 3ancomb 1099 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
14 | 13 | biimpi 215 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
15 | 4, 5, 10 | grpsubadd 18907 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
16 | 9, 14, 15 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
17 | 8, 12, 16 | 3bitr4d 310 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Grpcgrp 18815 -gcsg 18817 Abelcabl 19643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-cmn 19644 df-abl 19645 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |