MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub23 Structured version   Visualization version   GIF version

Theorem ablsubsub23 19341
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v 𝑉 = (Base‘𝐺)
ablsubsub23.m = (-g𝐺)
Assertion
Ref Expression
ablsubsub23 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ Abel)
2 simpr3 1194 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
3 simpr2 1193 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
4 ablsubsub23.v . . . . 5 𝑉 = (Base‘𝐺)
5 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
64, 5ablcom 19319 . . . 4 ((𝐺 ∈ Abel ∧ 𝐶𝑉𝐵𝑉) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
71, 2, 3, 6syl3anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
87eqeq1d 2740 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐶(+g𝐺)𝐵) = 𝐴 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
9 ablgrp 19306 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
10 ablsubsub23.m . . . 4 = (-g𝐺)
114, 5, 10grpsubadd 18578 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
129, 11sylan 579 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
13 3ancomb 1097 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ (𝐴𝑉𝐶𝑉𝐵𝑉))
1413biimpi 215 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐶𝑉𝐵𝑉))
154, 5, 10grpsubadd 18578 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐶𝑉𝐵𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
169, 14, 15syl2an 595 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
178, 12, 163bitr4d 310 1 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  -gcsg 18494  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator