Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elioore | Structured version Visualization version GIF version |
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elioore | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 13117 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
2 | 3ancomb 1098 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
3 | xrre2 12913 | . . 3 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) → 𝐴 ∈ ℝ) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) → 𝐴 ∈ ℝ) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |