MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubadd23 Structured version   Visualization version   GIF version

Theorem ablsubadd23 19794
Description: Commutative/associative law for addition and subtraction in abelian groups. (subadd23d 11616 analog.) (Contributed by AV, 2-Mar-2025.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsubadd23 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑍) = (𝑋 + (𝑍 𝑌)))

Proof of Theorem ablsubadd23
StepHypRef Expression
1 3ancomb 1098 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) ↔ (𝑋𝐵𝑍𝐵𝑌𝐵))
21biimpi 216 . . 3 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑍𝐵𝑌𝐵))
3 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
4 ablsubadd.p . . . 4 + = (+g𝐺)
5 ablsubadd.m . . . 4 = (-g𝐺)
63, 4, 5abladdsub 19793 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
72, 6sylan2 593 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
8 ablgrp 19766 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
93, 4, 5grpaddsubass 19013 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
108, 2, 9syl2an 596 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
117, 10eqtr3d 2772 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑍) = (𝑋 + (𝑍 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Grpcgrp 18916  -gcsg 18918  Abelcabl 19762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764
This theorem is referenced by:  ablsubaddsub  19795
  Copyright terms: Public domain W3C validator