MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetrtri Structured version   Visualization version   GIF version

Theorem xmetrtri 22439
Description: One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xmetrtri ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetrtri
StepHypRef Expression
1 3ancomb 1121 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
2 xmettri 22435 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶)))
31, 2sylan2b 587 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶)))
4 xmetcl 22415 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ ℝ*)
543adant3r2 1234 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℝ*)
6 xmetcl 22415 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ ℝ*)
763adant3r1 1233 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℝ*)
8 xmetcl 22415 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
983adant3r3 1235 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
10 xmetge0 22428 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → 0 ≤ (𝐴𝐷𝐶))
11103adant3r2 1234 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 0 ≤ (𝐴𝐷𝐶))
12 xmetge0 22428 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → 0 ≤ (𝐵𝐷𝐶))
13123adant3r1 1233 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 0 ≤ (𝐵𝐷𝐶))
14 ge0nemnf 12206 . . . 4 (((𝐵𝐷𝐶) ∈ ℝ* ∧ 0 ≤ (𝐵𝐷𝐶)) → (𝐵𝐷𝐶) ≠ -∞)
157, 13, 14syl2anc 579 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ≠ -∞)
16 xmetge0 22428 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
17163adant3r3 1235 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 0 ≤ (𝐴𝐷𝐵))
18 xlesubadd 12295 . . 3 ((((𝐴𝐷𝐶) ∈ ℝ* ∧ (𝐵𝐷𝐶) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐴𝐷𝐶) ∧ (𝐵𝐷𝐶) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶))))
195, 7, 9, 11, 15, 17, 18syl33anc 1504 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐵𝐷𝐶))))
203, 19mpbird 248 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107  wcel 2155  wne 2937   class class class wbr 4809  cfv 6068  (class class class)co 6842  0cc0 10189  -∞cmnf 10326  *cxr 10327  cle 10329  -𝑒cxne 12143   +𝑒 cxad 12144  ∞Metcxmet 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-2 11335  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-xmet 20012
This theorem is referenced by:  xmetrtri2  22440
  Copyright terms: Public domain W3C validator