MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2 Structured version   Visualization version   GIF version

Theorem leexp2 14208
Description: Ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
leexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀𝑁 ↔ (𝐴𝑀) ≤ (𝐴𝑁)))

Proof of Theorem leexp2
StepHypRef Expression
1 3ancomb 1098 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 ltexp2 14207 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 ↔ (𝐴𝑁) < (𝐴𝑀)))
31, 2sylanb 581 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 ↔ (𝐴𝑁) < (𝐴𝑀)))
43notbid 318 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (¬ 𝑁 < 𝑀 ↔ ¬ (𝐴𝑁) < (𝐴𝑀)))
5 simpl2 1191 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑀 ∈ ℤ)
6 simpl3 1192 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑁 ∈ ℤ)
7 zre 12615 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 zre 12615 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
9 lenlt 11337 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
107, 8, 9syl2an 596 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
115, 6, 10syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
12 simpl1 1190 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
13 0red 11262 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 ∈ ℝ)
14 1red 11260 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 ∈ ℝ)
15 0lt1 11783 . . . . . . 7 0 < 1
1615a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 1)
17 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 < 𝐴)
1813, 14, 12, 16, 17lttrd 11420 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 𝐴)
1918gt0ne0d 11825 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ≠ 0)
20 reexpclz 14120 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ)
2112, 19, 5, 20syl3anc 1370 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴𝑀) ∈ ℝ)
22 reexpclz 14120 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ)
2312, 19, 6, 22syl3anc 1370 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴𝑁) ∈ ℝ)
2421, 23lenltd 11405 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴𝑀) ≤ (𝐴𝑁) ↔ ¬ (𝐴𝑁) < (𝐴𝑀)))
254, 11, 243bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀𝑁 ↔ (𝐴𝑀) ≤ (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   < clt 11293  cle 11294  cz 12611  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100
This theorem is referenced by:  leexp2d  14288  hgt750leme  34652
  Copyright terms: Public domain W3C validator