Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leexp2 | Structured version Visualization version GIF version |
Description: Ordering law for exponentiation. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
leexp2 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 1100 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) | |
2 | ltexp2 13639 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 ↔ (𝐴↑𝑁) < (𝐴↑𝑀))) | |
3 | 1, 2 | sylanb 584 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 ↔ (𝐴↑𝑁) < (𝐴↑𝑀))) |
4 | 3 | notbid 321 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (¬ 𝑁 < 𝑀 ↔ ¬ (𝐴↑𝑁) < (𝐴↑𝑀))) |
5 | simpl2 1193 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑀 ∈ ℤ) | |
6 | simpl3 1194 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑁 ∈ ℤ) | |
7 | zre 12079 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
8 | zre 12079 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
9 | lenlt 10810 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) | |
10 | 7, 8, 9 | syl2an 599 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
11 | 5, 6, 10 | syl2anc 587 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
12 | simpl1 1192 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
13 | 0red 10735 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
14 | 1red 10733 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
15 | 0lt1 11253 | . . . . . . 7 ⊢ 0 < 1 | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 1) |
17 | simpr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 < 𝐴) | |
18 | 13, 14, 12, 16, 17 | lttrd 10892 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 𝐴) |
19 | 18 | gt0ne0d 11295 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ≠ 0) |
20 | reexpclz 13554 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ) | |
21 | 12, 19, 5, 20 | syl3anc 1372 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴↑𝑀) ∈ ℝ) |
22 | reexpclz 13554 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ) | |
23 | 12, 19, 6, 22 | syl3anc 1372 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴↑𝑁) ∈ ℝ) |
24 | 21, 23 | lenltd 10877 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) ≤ (𝐴↑𝑁) ↔ ¬ (𝐴↑𝑁) < (𝐴↑𝑀))) |
25 | 4, 11, 24 | 3bitr4d 314 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 ∈ wcel 2114 ≠ wne 2935 class class class wbr 5040 (class class class)co 7183 ℝcr 10627 0cc0 10628 1c1 10629 < clt 10766 ≤ cle 10767 ℤcz 12075 ↑cexp 13534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-div 11389 df-nn 11730 df-n0 11990 df-z 12076 df-uz 12338 df-rp 12486 df-seq 13474 df-exp 13535 |
This theorem is referenced by: leexp2d 13720 hgt750leme 32221 |
Copyright terms: Public domain | W3C validator |