MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2 Structured version   Visualization version   GIF version

Theorem leexp2 13523
Description: Ordering law for exponentiation. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
leexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀𝑁 ↔ (𝐴𝑀) ≤ (𝐴𝑁)))

Proof of Theorem leexp2
StepHypRef Expression
1 3ancomb 1091 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 ltexp2 13522 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 ↔ (𝐴𝑁) < (𝐴𝑀)))
31, 2sylanb 581 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 ↔ (𝐴𝑁) < (𝐴𝑀)))
43notbid 319 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (¬ 𝑁 < 𝑀 ↔ ¬ (𝐴𝑁) < (𝐴𝑀)))
5 simpl2 1184 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑀 ∈ ℤ)
6 simpl3 1185 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑁 ∈ ℤ)
7 zre 11973 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
8 zre 11973 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
9 lenlt 10707 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
107, 8, 9syl2an 595 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
115, 6, 10syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
12 simpl1 1183 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
13 0red 10632 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 ∈ ℝ)
14 1red 10630 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 ∈ ℝ)
15 0lt1 11150 . . . . . . 7 0 < 1
1615a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 1)
17 simpr 485 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 < 𝐴)
1813, 14, 12, 16, 17lttrd 10789 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 𝐴)
1918gt0ne0d 11192 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ≠ 0)
20 reexpclz 13437 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ)
2112, 19, 5, 20syl3anc 1363 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴𝑀) ∈ ℝ)
22 reexpclz 13437 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ)
2312, 19, 6, 22syl3anc 1363 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴𝑁) ∈ ℝ)
2421, 23lenltd 10774 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴𝑀) ≤ (𝐴𝑁) ↔ ¬ (𝐴𝑁) < (𝐴𝑀)))
254, 11, 243bitr4d 312 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀𝑁 ↔ (𝐴𝑀) ≤ (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079  wcel 2105  wne 3013   class class class wbr 5057  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   < clt 10663  cle 10664  cz 11969  cexp 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418
This theorem is referenced by:  leexp2d  13603  hgt750leme  31828
  Copyright terms: Public domain W3C validator