MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv Structured version   Visualization version   GIF version

Theorem ablodivdiv 30585
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablodivdiv ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶))

Proof of Theorem ablodivdiv
StepHypRef Expression
1 ablogrpo 30579 . . 3 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
2 abldiv.1 . . . 4 𝑋 = ran 𝐺
3 abldiv.3 . . . 4 𝐷 = ( /𝑔𝐺)
42, 3grpodivdiv 30572 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
51, 4sylan 579 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
6 3ancomb 1099 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
72, 3grpomuldivass 30573 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵)))
81, 7sylan 579 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵)))
92, 3ablomuldiv 30584 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = ((𝐴𝐷𝐵)𝐺𝐶))
108, 9eqtr3d 2782 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶))
116, 10sylan2b 593 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶))
125, 11eqtrd 2780 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ran crn 5701  cfv 6573  (class class class)co 7448  GrpOpcgr 30521   /𝑔 cgs 30524  AbelOpcablo 30576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577
This theorem is referenced by:  ablodivdiv4  30586  ablonncan  30588
  Copyright terms: Public domain W3C validator