| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablodivdiv | Structured version Visualization version GIF version | ||
| Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| abldiv.1 | ⊢ 𝑋 = ran 𝐺 |
| abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| ablodivdiv | ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablogrpo 30462 | . . 3 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
| 2 | abldiv.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 3 | abldiv.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 4 | 2, 3 | grpodivdiv 30455 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) |
| 5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) |
| 6 | 3ancomb 1098 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
| 7 | 2, 3 | grpomuldivass 30456 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵))) |
| 8 | 1, 7 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵))) |
| 9 | 2, 3 | ablomuldiv 30467 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = ((𝐴𝐷𝐵)𝐺𝐶)) |
| 10 | 8, 9 | eqtr3d 2771 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶)) |
| 11 | 6, 10 | sylan2b 594 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶)) |
| 12 | 5, 11 | eqtrd 2769 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ran crn 5653 ‘cfv 6528 (class class class)co 7400 GrpOpcgr 30404 /𝑔 cgs 30407 AbelOpcablo 30459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-grpo 30408 df-gid 30409 df-ginv 30410 df-gdiv 30411 df-ablo 30460 |
| This theorem is referenced by: ablodivdiv4 30469 ablonncan 30471 |
| Copyright terms: Public domain | W3C validator |