MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv Structured version   Visualization version   GIF version

Theorem ablodivdiv 30572
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablodivdiv ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶))

Proof of Theorem ablodivdiv
StepHypRef Expression
1 ablogrpo 30566 . . 3 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
2 abldiv.1 . . . 4 𝑋 = ran 𝐺
3 abldiv.3 . . . 4 𝐷 = ( /𝑔𝐺)
42, 3grpodivdiv 30559 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
51, 4sylan 580 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
6 3ancomb 1099 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
72, 3grpomuldivass 30560 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵)))
81, 7sylan 580 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵)))
92, 3ablomuldiv 30571 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = ((𝐴𝐷𝐵)𝐺𝐶))
108, 9eqtr3d 2779 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶))
116, 10sylan2b 594 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶))
125, 11eqtrd 2777 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  ran crn 5686  cfv 6561  (class class class)co 7431  GrpOpcgr 30508   /𝑔 cgs 30511  AbelOpcablo 30563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564
This theorem is referenced by:  ablodivdiv4  30573  ablonncan  30575
  Copyright terms: Public domain W3C validator