MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv Structured version   Visualization version   GIF version

Theorem ablodivdiv 30515
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablodivdiv ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶))

Proof of Theorem ablodivdiv
StepHypRef Expression
1 ablogrpo 30509 . . 3 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
2 abldiv.1 . . . 4 𝑋 = ran 𝐺
3 abldiv.3 . . . 4 𝐷 = ( /𝑔𝐺)
42, 3grpodivdiv 30502 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
51, 4sylan 580 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
6 3ancomb 1098 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
72, 3grpomuldivass 30503 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵)))
81, 7sylan 580 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = (𝐴𝐺(𝐶𝐷𝐵)))
92, 3ablomuldiv 30514 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐺𝐶)𝐷𝐵) = ((𝐴𝐷𝐵)𝐺𝐶))
108, 9eqtr3d 2766 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶))
116, 10sylan2b 594 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺(𝐶𝐷𝐵)) = ((𝐴𝐷𝐵)𝐺𝐶))
125, 11eqtrd 2764 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5624  cfv 6486  (class class class)co 7353  GrpOpcgr 30451   /𝑔 cgs 30454  AbelOpcablo 30506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507
This theorem is referenced by:  ablodivdiv4  30516  ablonncan  30518
  Copyright terms: Public domain W3C validator